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The method of generalized master equations (GME) is used to investigate the nonequilibrium
properties of a mean-field ferromagnet model in interaction with a bath. The Zwanzig projection
techniques, modified to include coarse graining, provide the tool for obtaining various GME’s at various
levels of description. Results obtained by Goldstein and Scully and by Wang are shown to follow from
the GME’s in the long-time limit and an undesirable assumption, which was necessary in an earlier
analysis, is eliminated. Explicit expressions are calculated for several quantities relevant to the evolution
of the probabilities and their moments. Short-time results, characteristic of the underlying microscopic
equations and inaccessible to the traditional analysis, are shown to follow from the GME, with a
specific illustration for a simple two-spin system. This work thus complements the earlier analysis of

Goldstein and Scully.

L. INTRODUCTION, MODEL, AND TECHNIQUE

Studies of nonequilibrium properties of a uniform-
coupling model of a ferromagnet in interaction with
a bath have been recently reported.’? Techniques
based on the Zwanzig derivation® of generalized
master equations (GME) have been recently de-
veloped and applied* to problems of the oscillatory
approach to equilibrium in the Kac-Dresden model®
and the description of excitation transfer in mo-
lecular aggregates.® In the present paper the
model studied in Refs. 1 and 2 (albeit in a gener-
alized form) is analyzed with the help of the tech-
niques presented in Refs. 4 and 6.

The system under investigation has the Hamil-
tonian!’2

H=H;+H,+V, (1.1)
where
Hy=—(2JS"S* +2uBS%) , (1.2)
Hy=)  €ala, s (1.3)
o
V=Y A (S*a, +S al +5*al, +5 a,)
(-3
=D AV VIV VD) . (1.4)
o

Following the customary notation §=3¥,3;, § and
8; have respective Cartesian components S*, S%,
S# and s}, s, s, the expressions Sf+iS” are ab-
breviated as S*, etc. The above model incorpo-
rates a trivial generalization of the one studied in
Refs. 1 and 2 in that the latter does not contain the
first two terms in Eq. (1.4). The reservoir par-
ticles, created by a;, are taken to be bosons. It
should be noted that due to the uniform-coupling
nature of the model the various terms in Eq. (1.4)
are independent of the spin locations.

The GME technique of the description of the time

11

evolution exploits the equation

’8Pe(t) _ ¢ ’ ’ ’ ’ ’
5 ), % 2 (Wt =P () =W, ot 1) Pi(t7),
m
(1.5)
which is more general than the customary Pauli
master equation (PME)

0P,(¢)
ot

=5 [FuPult) - F, Py (1)]

I

(1.6)

in that it is non-Markoffian and describes the evo-
lution correctly for times shorter than are access-
ible to the PME, although at large times its pre-
dictions can coincide with those of the PME. The
derivation of Eq. (1.5) and the relevant discussions
have been repeated in the literature almost more
often than necessary, and we shall therefore not
present them here. A lucid discussion may be
found in the original Zwanzig article.® It suffices
to state here that Eq. (1.5) is an exact consequence
of the Liouville equation under the initial diagonal-
ity condition (also called the initial random-phase
assumption), and under the weak-coupling approxi-
mation, which involves retaining the first term in
a perturbation scheme, the “memory-possessing
transition probability” W, (¢) is given in the Zwan-
zig argument® by

W) =2[(E| V|p)|% coswy,t . (1.7)

It may be helpful to recall here that in this version
of the GME the probabilities P, are diagonal ele-
ments {£1pl&) of the density matrix p in a repre-
sentation of the eigenstates (£, u, etc.) of a part
Hy of the total Hamiltonian Hy+ V, that w,, is the
difference E, —E, of the eigenvalues of H,, and
that # has been equated to unity.

This version of the GME has been used in Wang’s
analysis? of the present problem, and it will be
shown below that the relevant equations in Ref. 2
can be obtained with considerable economy of ef-
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fort as a direct consequence of Eq. (1.7). How-
ever, there exists another version of the GME*%"
which is more appropriate to the problem at hand.
It involves a coarse-graining operation which is
built into the projection operator employed to ob-
tain the GME. It replaces Eq. (1.7) with another
equation whose particular form depends on the
particular definition of the projection operator,
i.e., on the amount and nature of the coarse grain-
ing employed. If the coarse graining is defined as
an equal-weight summation over the states &, u
into groups £/, u’, one replaces £, p in Eq. (1.5)
with £/, u’ and replaces Eq. (1.7) with %8

w,.u'(t)=(2 1)"22 (e | V| ) | coseput.
@) i,

(1.8)
If |£)=1£"1a), the coarse graining may be defined
as a trace over the |a) space. If the operation is
modified with the introduction of thermal factors
e®Fa/Z, where E, is an energy corresponding to
l@) and Z is the normalizing constant, Eq. (1.7)
is replaced® with

Weeur(B)=(2)12) B (' [(a| V]b) | )|
Qyd

(1.9)

A detailed discussion of the derivation of these
equations has been given elsewhere.* They follow
from the expression ®L ¢ #1-PL (1 — @)L (® and L
are the projection operator and the Liouville oper-
ator, respectively), from which W,,(¢) is ob-
tained?™*'~® when the meaning of @ is suitably mod-
ified. The primary element in the nonequilibrium
analysis of the model specified by Egs. (1.1)—(1.4)
is therefore an evaluation of W(¢) as given in
equations like (1.7)~(1.9). This constitutes the
first part of the calculations presented below.

X Ccoswy,t.

II. EXPLICIT EXPRESSIONS

Taking H, as the sum H; + H, of the ferromag-
netic and bath Hamiltonians and writing 1£)=1s,n),
luw) =1s’,n’), one observes that the energy differ-
ence wy, appearing in Eqs. (1.7)-(1.9) is given by

Weu=Egr e — Eg
==2J(S'-9) S'+S+E—§>+Z(n’ -n,)e€ (2.1)
J m o o o * .

In view of the particular nature of the interaction
V [see Eq. (1.4)], one need consider only four
types of states |s’,n’) to analyze Eq. (1.7). Write
Is,n)=1s)In) and define (in keeping with the no-
tation in Ref. 2) states |sj)=sjls), |s7)=s]ls),
Inty=aln), n)=a,m). Here s; yields zero if
the state |s) on which it acts has s;== 3, and if
$;=F3 it yields the state |s3}), which is identical
to |s) except in having its spin at the jth location
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reversed. The nature of the states |n%) is ob-
vious from the definition of the familiar operators
aL and a¢,. Dropping the spin location index one
then has four types of states Is’,n’): Is*, ny),
Is™,n4), Is*,n%), and |s7,n,). These are precisely
the states (and the only states) that are connected
to |s,n) by the respective terms A, V2", A, V",

A, V2, and A, V.~ of the interaction V in Eq. (1.4).
The first of these terms gives rise to the matrix
element

<S;, n;!xavc:-ls’n>=)‘a Ry 5

which is independent of the spin location index.
Other matrix elements may be calculated in a
similar manner. One also observes that for the
above four types of states, one may write in Eq.
(2.1) 8’ ~S=+1 and &' +S=25+1 if s'=s*. Also
nt —ny=+1. With the definition®

(2.2)

A,=Es-E,=F2J(2S+1)F uB (2.3)

one can write the energy differences w;, between
Is,n) and the above four types of states as sums
and differences of the quantities A, and €,. These
energy differences and the matrix elements like
(2.2) are all that is required to write down the
GME for the evolution of the probabilities P; ,.
Equation (1.5) takes the form

3Ps,n(t) f dt'z {w* (¢ —t')Ps"‘.n ()

. X%

+ Wt - )P, o () +w (¢t -2")P, e ()]
Wt - t')PS+,,,+ ") = [w* (= t") + Wt - )
e t')+w"(t )P, )} . (2.4)

The quantities W*", etc., are all functions of S
and n, relevant to the state |s,z) and are defined
through

W (£) =222, cos(A, —€,)t , (2.5)
Ww(£) =222 (n, +1) cos(A.+€,)t , (2.6)
w*(t) =222 (n, +1) cos(A, +¢, )t , (2.7)
W () =22n, cos(A. —¢, )t . (2.8)

These expressions are a straightforward conse-
quence of Eq. (1.7). If, in keeping with the model
in Ref. 2, one omits the terms given in Egs. (2.5)
and (2. 6) and notes® that our quantities P, ,(¢),
€,,4,, and A_ are equivalent to the quantities
pls,n,t), w,, - AE,, and AE_ in Ref. 2, one imme-
diately obtains Eq. (3.12) in the latter as a special
case of our Eq. (2.4).

II. COARSE-GRAINED GME (MICROSCOPIC)

When the detailed evolution of the states |s,#)
is not under investigation and it is only the states
|s) that are of interest, a summation is ordinarily
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performed? over the states |#). The closed nature
of the evolution equation is naturally lost because
of this summation, i.e., the evolution of the P

is given not in terms of P but in terms of Pg,.,
which are entitles external to the space of entities
P,. To circumvent this problem the assumption.

Ps,n(t)=Ps(t)Pn(°°) (3.1)

is made, 2 whereby the bath is assumed to be for-
ever in the (thermalized) state P,(»), in spite of
its interaction with the ferromagnetic system. It
will be now shown that the assumption implied by
Eq. (3.1) above [Egs. (3.13) and (4.1) of Ref. 2)
can be completely avoided with the help of the
coarse-grained GME.

For this purpose one replaces the diagonalizing
projection operator® ®;, which gives, for any
operator O,

<S, nl(PlOls” n’>= (S, nl OIS,VL)GS,SI 5,7'": » (3. 2)
by the new operator ®@,, which gives
(s,nl®,0ls’,n")

=Z1ePEnYy (s,n|0|s,1)8, 400 , (3.3)

{n}

where

z=Y e*Fn |

{n}

Equation (3.3) has, as a consequence, Eq. (1.9),
with &', u', a, b, &, u replaced with s, s’, n, #’
(s,n), (s’,n’,), etc. A straightforward calculation
yields for Py =}, P, ,

t) f dt'Z{w*(t ) P(t’)

+ Wt - t’)PsJ;(t’) —[w*t =)+ Wt - )] Pt}

(3.4)
as the new GME with
W*(1)=7,(t) cosA,t ~n,(f) sinA,t (3.5)
where
7.(t) = 22 22 [27le,) +1] cose, 2, (3.6)
o
75(t)=2) A2 sine,t (3.7)
o
le,)=21Y  ePFnn, =(foa - 1)1, (3.8)

{n}
Once again reduction of Eq. (3.4) above to Eq.
(3.18) of Ref. 2 is immediate when the first two
terms in Eq. (1.4) are dropped. The form of Eq.
(3.4) is then unchanged, but Eq. (3.5) is replaced

with
w*(t) =1i(t) cosA,t Fni(t) sina, ¢, (3.9)
with
16(6)=2) " A3 [ale,) + 1] cose,t (3.10)
3
ne(t) =2 227 (€,) cose,t (3.11)
-3
75(t)= 2> AZ[7le, +1)] sine,t (3.12)
(-3
n3(t)=2> " A27le,) sine, ¢ . (3.13)
(-3

It is interesting to observe that the equations are
actually simplified [see Egs. (3.5)—(3.7)] by the
generalization of the model adopted in this paper.
This is so because then only the combinations 7;
+mz=7, and n —n; =7 appear in the expressions.
It is trivial to see that Eq. (3.4) with Egs. (3.9)-
(3.13) is identical to Eq. (3.18) of Ref. 2.

IV. COARSE-GRAINED GME (MACROSCOPIC)

As was done earlier, 2 one may now perform the
appropriate summation on Eq. (3.4) and obtain a
macroscopic evolution equation for the probability
Yscs Ps=P(S, t)=P(m,t) that the total S has a value
m=S. One does not require an assumption anal-
ogous to Eq. (3.1) here because w* is independent
of the spin locations and depends on the ferromag-
netic state only through A,, which contains S [see
Egs. (3.5) and (2.3)]. We shall, however, show
here how the macroscopic evolution equation may
be obtained directly without the help of the inter-
mediate equations derived above. The projection
operator we shall now employ is ®;, which gives
for any operator O,

(s,n|®;0|s",n")

=<Z 1>-1 ZZ-I e_BEnZ <S, n! OIS’ n>és.s'5n,n'9t

sCS sCS {n} 4. 1)

which, in addition to the diagonalization performed
by @, [see Eq. (3.2)] and the summation with ther-
mal factors over the {n} performed by @, [see Eq.
(3. 3)] performs an equal-weight summation (sC S)
over those {s} states which have a total S* value
equal to S. The resulting GME, with m =S5,

aP(m dP(m, t) f dt'Z[wmm:(t—t')P(m £')

et =27 Pl £1)], (4.2)
involves the functions W, given by

Wt () = (BN +m" )W ()0 e | o
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+(%N"ml)w-(t)5m',m-1 ’ (4-3)
Wm'm(t) = (%N_ m)w-(t)ém',mi-l
+(%N+m)w+(t)5m':m-1 ’ (4-4)

Ww* being given by Eq. (3.5). The reduction of

Eq. (4.2) with (4. 3) and (4.4) to Eq. (3.20) of Ref.
2 is again immediate upon the simplification of our
model. It is interesting to observe that while the
microscopic GME’s [Egs. (2.4) and (3.4)] do not
possess a specially simple form, the nature of the
interaction V in the model (each term in V flips
only one spin) forces the macroscopic GME to have
the simple (one-dimensional) form (4. 2), with
only nearest-neighbor transition probabilities de-
picted in Eqs. (4.3) and (4.4). We shall rewrite
Eqs. (4.2) through (4.4) as

9P(m) -
ot 2

N+m +1)W*(m) * Plm +1)

+(EN —=m +1)w (m) * Pm - 1)
= (3N =m)W(m)* Plm)
~(N+m)W*(m)* P(m) , (4.5)

where the dependence of ‘W* on m is made explicit'
and * represents the time convolution, i.e., Ax B
=[5 dt’A(t -t')B(t’'). It is a straightforward exer-
cise to expand P(m +1), Plm -1), etc., in Eq.
(4.5) and obtain a non-Markoffian Fokker-Planck
equation which is more general than, but reduces
at long times to, the Markoffian Fokker-Planck
equation obtained earlier for this problem [Eq.
(3.2) of Ref. 1].

V. APPLICATIONS OF THE FORMALISM

Equation (4.5) is the basic equation for the mod-
el studied. With its help we shall give two appli-
cations of the GME formalism and indicate how its
results are more general than, and reduce under
the Markoffian approximation to, the predictions
of the usual PME analysis.!’? The first application
is the derivation of equations for moments, which
get their importance from that of the quantities!
(m) =3 pmPlm) and o2=(m? - (m)? (the mean mag-
netization and its mean-square fluctuation, re-
spectively), and the second involves an analysis of
a two-spin system.

Equation (4. 2) gives the general expression for
the 7th moment

- 0, bn)x pon)= (@), (5.)
where
Qr(m)=zwm'm(m” -m") . (5~ 2)

Equations (4. 3) and (4.4) yield, for the model
under study,

@,(m) = N[ W*(m) = W (m)] = m[W*(m) +W'(m)](,
5.3)
@y (m) =m(N = 1)[W*(m) — W (m)]

- (2m? - 3N) [W*(m) + W (m)] . (5.4)
Equations (5.1) and (5. 3) imply, for instance, that

a + - - -

L) T m) = ) = (9 m) + W )
(5.5)

which is a term-by-term generalization (to the

non-Markoffian situation) of Eq. (3.5) of Goldstein

and Scully,! which we repeat here:

) (&N [Ty0m) = Tym)]) = ([Talon) + Ty o)) .

) (5.6)
Our Eq. (5.5) is identical to Eq. (5.6), except for
the replacement of the simple average (++.)in the
latter with the average with the time convolution
-+ *) in the former. It is straightforward to show
that [;° dtw*(m, )= Tylm) and [5" dt W lm, t)=Ty0mn),
which means that our Eq. (5.5) reduces to the re-
sult of Ref. 1 under the Markoffian approximation.
‘Using Egs. (3.5), (5.1), (5.3), and (5.4), one ar-
rives, after some calculation, at

1%”2 = (Q(t) sin(dTm + L)LY,
~(R(tym cos(adm + pB)t), (5.7)
d%z): N(R(#) cos(4Jm + uB)E ),

+(2/NN = 1(Q(t)ym sin(4Jm + uB)t),
- 2(R(t)m? cos(4Jm + uB)t), , (5.8)

where the 7 -independent (but bath-dependent)
quantities Q(f) and R(¢) given by

Q#) = Nny(#) cos2Jt —5,(t) sin2J¢] , (5.9)
R(#)=2[n (¢) sin2J ¢ +0,(t) cos2J¢ ] , (5.10)

have been displayed separately.

As the second application of the formalism we
shall consider the simple two-spin system. Then
N=2, and there are four microscopic (after the
coarse graining over the bath) states and three
macroscopic states corresponding to values —1,
0, and +1 of m. The probability equations at the
“macroscopic” level are

9%(—0) = 2w*(0)  P(1) + 2w (0) x P(— 1)

= [w™(0) +w*(0)] * P(0) , (5.11)
3—%—1’ —w (1) % P(0) - 2w*(1) * P(1) , (5.12)
31%1) =w(=1)* P(0) — 2w (= 1)* P(=1) , (5.13)

wherein the W’s are easily calculated from Eq.
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(3.5) and from the energy differences

-4,(00=A(1)=2J+uB, (5.14)
-A(0)=A,(-1)=2J-uB, (5.15)
-A,(1)=6J+uB, (5.16)
~A(-1)=6J-puB. (5.17)

Given the bath functions 7.(f) and 5.(#), it is
straightforward, if tedious, to obtain exact solu-
tions for this system. In order to appreciate the
essential changes brought about by the GME for-
malism, we shall now make some simplifying as-
sumptions which will avoid the considerable al-
gebra that would otherwise result. If the magnet-
ic field B is turned off, Laplace transforms im-
mediately yield the solution of Eq. (5.11) as

P0)=1/2¢+[P(0,0) - 3]/[e+4®(0)] ,

where the tilde denotes the Laplace transform, €
is the Laplace variable, ‘W(0) equals W*(0) with
B=0, and where use has been made of the conser-
vation of probability in the three-level system:
P(0)+P(1)+P(~1)=1.

The first term in Eq. (5.18) is at once recog-
nized as corresponding to the final equilibrated
value % of P(0, ), whereas the second term de-
scribes the decay of the difference between the
initial and final values of P(0). On applying the
analysis of Ref. 1 to this two-spin system one ob-
tains

P(0,#)=3+[P(0,0) — 3] ™, (5.19)

where I ,(0)= I with B=0. Equation (5.19) also
follows immediately from Eq. (5.18) under the
Markoffian approximation

(5.18)

W(0, £)~ ﬁ(t)[ fo " atwlo, m]: ST .

The particular expression

W(0, £) = 7,(¢) cos2Jt + 7, (¢) sin2J ¢ (5. 20)

has some interesting consequences in Eq. (5.18)
which will, however, be discussed elsewhere. In
order to observe the effect of relaxing the Mar-
koffian assumption, let us approximate Eq. (5.20)
by

w(0,#)=Tye™ , (5.21)

ignoring the details in Eq. (5.20). This form is
reasonable if the bath functions 7, and 5, have
strong decays, and it reduces to the Markoffian
approximation in the limit y—-«, Equations (5.18)
and (5.21) yield

P(0,t)=%+[Pl0,0) - L]e™ 2[ cosQut + (/29) sinQt ] ,

(5.22)
where

Q=(4Ty -1A/2 | (5.23)

V. M. KENKRE 1

Oscillations (for the underdamped case) typical to
the GME analysis are exhibited in Eq. (5.22) and
are displayed in Fig. 1 along with the result in Eq.
(5.19), the initial value of P(0) being taken as 1.

VI. DISCUSSION

With the help of the method of generalized master
equations (GME), the present paper complements
the thorough treatment of Golstein and Scully! of
the nonequilibrium properties of the mean-field
ferromagnet model in interaction with a bath. The
GME’s were obtained by various authors?' 710 ag
an intermediate step in the derivation of the Pauli
master equation (PME), which forms the basis of
all traditional transport analysis. The projection
techniques of Zwanzig® were introduced into the
present problem by Wang, 2 who rederived some of
the equations of Goldstein and Scully! and applied
the general Zwanzig comments to the specific
model with the particular purpose of clarifying the
place where irreversibility is introduced into the
problem. As in the original derivations,” how-
ever, the analysis in Ref. 2 employs the GME only
as an intermediate step. We have developed tech-
niques®!! based specifically on the features of the
GME which are not shared by the PME, and they
have been recently applied*® to several problems.
It is in that spirit, and with results that go beyond
those of the PME (i.e., of the earlier analysis')
that these GME techniques have been applied to the
ferromagnet model.

The generalization of the model used earlier, 12
implied by our Eq. (1.4), although trivial, is
natural and leads to some simplified expressions
[compare Eqgs. (3.5)-(3.8) with Eqgs. (3.9)—(3.13)].
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FIG. 1. Probability P(0,t) that the level m =0 is oc-
cupied, plotted as function of time . The dashed curve
represents the usual analysis and the solid curve is the
result of the GME. Units of ¢ are arbitrary.
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The main contribution of this paper lies in deriving
and using equations like (1.5) which have greater
content than equations like (1.6). The procedure
consists in defining various projection operators,
like ®;, ®,, and ®;, through equations like (3. 2),
(3.3), and (4.1) and obtaining GME’s such as
(1.5), (2.4), (3.4), (4.2), (4,5), (5.11), (5.12),
and (5.13), with the “memory-possessing transi-
“tion probabilities” Wgiven by equations like (1.7),
(1.8), and (1.9), with the resulting expressions
(2.5)-(2.8), (3.5), (3.9), (4,3), (4.4), and (5. 20).
The results of the GME’s thus derived coincide
with those (deduced from the PME’s) obtained ear-
lier'2 at large times, but differ from them at
short times. This wavelike or coherent behavior
is a direct manifestation of the underlying micro-
scopic reversibility (contained in the Schrddinger
or Liouville equations). It is eliminated by the
strong Markoffian approximation made in obtaining
the PME. Thus Eq. (4.5) will describe, at suf-
ficiently short times, the wavelike behavior charac-
teristic of the basic equation from which it was de-
rived, but its results will coincide exactly with
those of Eq. (3.23) of Ref. 2 or of (3.2) of Ref. 1
at sufficiently long times. The connection between
our W’s and their Is is given by J; df w*(m)
=TIy(m) and [§° dt W (m)=Ty(m), and one sees that
a “time smoothing” of GME quantities gives the
corresponding PME quantities. Similarly, Eqgs.
(5.6) and (5.19) implied by the earlier analysis!
[Eq. (5.6) is Eq. (3.5) of Ref. 1] find their gener-
alizations in Eqs. (5.5) and (5. 22), respectively.
As a bonus result from the present analysis one
obtains the elimination of the undesirable assump-
tion (3.1) that Wang was forced to make? [in his
Egs. (3.13) and (4. 1)] because of his use of the
“fine-grained” GME. To assume that the state of
the bath (the reservoir) remains completely unaf-
fected during the entire evolution already destroys
reversibility at an earlier stage, even before the
Markoffian approximation [Eq. (3.22) of Ref. 2) is
made. That assumption cannot be avoided in Ref.
2, but is completely eliminated in the present anal -
ysis with the help of the coarse-graining operation.
- This is so because the coarse-grained GME does
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not (directly) involve the state of the bath at all!
Another advantage of the coarse-grained GME is
that one can see clearly how, once the thermody-
namic limit is taken, leading to the elimination of
Poincaré cycles, a decaying W(¢) results in spite
of, and out of, the basic microscopic oscillatory
w(f). This happens through the “Fourier trans-
form” of the V matrix elements implied by equa-
tions like (1.8). In fact an expression like (3.5)
clearly shows the basic oscillatory nature of the
W’s through the cosines and the sines while the
irreversibility, brought about by the transition to
the macroscopic level of the description (i.e., by
the coarse graining), appears in the decaying bath
functions 7, and ;.

The equations for moments for a large system
and for the probabilities for a two-spin system _
have been derived as applications of the formalism
developed here. To illustrate the special features
of the GME treatment as well as its agreement
with the traditional analysis, the probability
curves arising from both treatments in the context
of the two-spin system (simplifications having
been made to reduce the algebra) have been plotted
in Fig. 1. The time scale and the values of I" and
y (0.1 and 0.8, respectively) are chosen arbi-
trarily. One observes that the solid curve (the
GME result) arising out of Eq. (5.22) shows a
zero slope at =0 and an oscillation.'? Both these
phenomena are characteristic of the underlying
microscopic reversibility (wave like behavior) and
neither one can be obtained from the traditional
(PME) analysis typified by Eq. (5.19) and repre-
sented by the dashed curve. However, one also ob-
serves that a time smoothing of the solid curve
gives the dashed curve and that the two coincide
at long times.

It is important to remark that the additional pre-
dictions of the GME presented here would not be
very relevant if the time which characterizes the
transition to the PME behavior were extremely
small (or in practical situations inaccessible). In
such cases the treatment of Goldstein and Scully!
does not need to be complemented by the present
analysis.
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