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Abstract 

We study the problem of the thermal stability of the Davydov soliton, in the context of its viability as providing a 
mechanism for energy transfer in proteins, by making a quantitative comparison between the full quantum model and the 
semiclassical model which has been used frequently for analytic and numerical calculations. Our goal is to gain insight into 
the range of validity of the semiclassical model in the particular context of finite temperatures. Our results indicate that, at 
biologically relevant temperatures, for the parameters chosen, the semiclassical model gives practically the same results as 

the full quantum mechanical model. 

In many biological processes involving systems 

such as proteins, the release of useful energy occurs in 
regions (the active sites) lying at non-negligible dis- 
tances from regions in which the energy is consumed. 

The question thus arises how this energy, which is not 
enough to create excited electronic states, can travel 
without being dispersed or dissipated into heat. In 

Davydov’s model [ 1 J it is assumed that the energy 
released in the hydrolysis of adenosine triphosphate 
(ATP) leads to the creation of amide I vibrations in 
the hydrogen-bonded spines of protein cu-helices. The 
interaction of the amide I excitation with the vibra- 
tions of the neighboring hydrogen bonds leads, within 
the approximations of the analyses employed, to a 
nonIinear effect and to soliton states. The nonlinear 
effect is closely related to that inherent in polaron 
dynamics [ 21. 

The Davydov model has been recently the subject 
of many analytical and numerical studies [ 31. An out- 

standing question in the field is that of the thermal 
stability of the soliton [4-81. From Langevin simula- 

tions of the Davydov model it was initially concluded 
that Davydov solitons are not thermally stable at bio- 
logical temperatures [ 41. Further studies have, how- 

ever, uncovered a more complex picture [6] and it 
has been suggested [ 111 that the soliton lifetimes es- 
timated in Ref. [ 41 might be lower bounds rather than 
accurate estimates. These investigations as well as a 
number of other related studies of the thermal stability 
of the soliton [5,7-IO] have been based on the semi- 
classical approximation. An analysis of the validity of 
this approximation is obviously important as pointed 
out recently by a number of authors [ 12,131. While it 
is not our purpose here to settle this validity issue in 
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complete generality, we make what we believe to be a 
useful contribution in this field by reporting results of 
our Monte Carlo studies of the Davydov model, with 

specific assumed values for the physical parameters 
involved, vis-a-vis known results of quantum Monte 
Carlo studies [ 141 of the same model for the same 
parameters. 

The Hamiltonian fi under consideration is [ l] 

A = I?Zqp + irph + at”t, (1) 

where fiqp is the quasiparticle Hamiltonian, associated 
with the amide I vibration, Apt, is the phonon Hamil- 

tonian and fiinr is the Hamiltonian for the interaction 
between the quasiparticle and the lattice phonons. The 
quasiparticle Hamiltonian fiqt, is 

where E is the amide I energy, -J is the dipole-dipole 
interaction energy between neighbouring sites and &L 

(6,,) is the creation (annihilation) operator for an 
amide I excitation in site n. 

The phonon Hamiltonian fit,, is 

ap,,,&P;,2A4+ iK(& -a,_,)2], (3) 
ll=l 

where ic, is the displacement operator for site n, pn 

is the momentum operator of site n, M is the mass of 
each site and K is the elasticity constant of the lattice. 

Finally, the interaction Hamiltonian Ai”, is 

ll=I 

+x-(a” - G”_,)S&], (4) 

where x+ (,I-) is an anharmonic parameter related 
to the coupling between the amide I excitation. 

The semiclassical version of the above fully quan- 
tum mechanical model is obtained by replacing all 

operators describing lattice coordinates and momenta 
by c-numbers. In order to carry out a comparison be- 
tween the two versions of the model, it is necessary to 

choose a quantity denoting the extent of self-trapping 
which can be used in both approaches. In a lattice with 
periodic boundary conditions at thermal equilibrium, 

the probability for an excitation to be in site n is equal 
for all sites because all sites are equivalent. In other 
words, the average excitation per site is 1 /N, whether 

the underlying states that compound the average are 
localized or not. To distinguish between delocalized 
and localized regimes, one must modify the candidate 
quantity in order to break the effect of the transla- 
tional symmetry of the lattice. The choice of such a 

quantity and its modification in the manner stated have 

already been carried out in the quantum mechanical 
Monte Carlo calculations of Wang et al. [ 141, where 

a suitable candidate was found to be the lattice dis- 
placements around the location of the quantum quasi- 

particle. We use the same quantity in our semiclassical 

Monte Carlo studies and compare the results. 
In the semiclassical model, the average displace- 

ment of site IZ at temperature T, ((u;)), is 

where p = l/knT, kB being the Boltzmann constant 

and Ei( {u,,}) are the eigenvalues of the semiclassi- 
cal Davydov Hamiltonian. The superscript c indicates 
that the displacements U, are correlated with the po- 
sitions of the maximum probability for the location of 
a quasiparticle in each of the eigenstates i. Thus ~6 
is the displacement at the site of the peak, UT is the 

displacement on the right side of the peak, etc. 
At infinite temperature, the average displacement 

difference correlated with the excitation predicted by 
the quantum mechanical model is -2x/~, indepen- 

dent of the number of sites N and the quasiparticle in- 
teraction V [ 141. By considering the simple case N = 
2, it is possible to recover this result in the semiclas- 
sical approach. At very large temperature, the quasi- 
particle Hamiltonian (2) is negligible compared to 
the phonon (3) and interaction Hamiitonian (4). The 
Hamiltonian ( 1) is diagonal in the quasiparticle exci- 
tations and expression (5) becomes 
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Pig. 1. Comparison of results for thermal stability of the Davydov soliton in the fully quantum mechanical model and in its semiclassical 
version. Plotted is the correlation between the lattice displacement and the quasiparticle excitation for (a) T = 0.7 K, (b) T = 2.8 K and 
(c) T = 11.2 K. The solid line is for the semiclassical model and the dotted line is for the full quantum mechanical model. V = 1.55 J, 
x+ = x- = 62 pN and K = 13 N/m. The semiclassical simulation is for a lattice with N = 30 sites. The quantum mechanical values am 
reconstructed from Ref. [ 14 1. 

Making the change 2~ + K necessary to go from the 
N > 2 to the N = 2 Hamiltonian we find that at suf- 
ficiently large temperatures the semiclassical model 
leads to the same result as the quantum mechanical 
model. This is expected since as temperature increases 
the lattice motions become more classical. Our inter- 
est in this note is to determine, with the help of our 
numerical experiments, how large the temperature has 
to be for the semiclassical model to be valid in this 
manner. 

Expression (5) can be evaluated by Monte Carlo 
methods where the displacements U, are generated and 

accepted with the usual Metropolis acceptance criteria 
[ 161 and where an eigenvalue problem of size N is 
solved for each Monte Carlo step that is accepted. The 
quantum Monte Carlo simulations were reported for 
11 sites, in lattices of about 24 sites. Our own semi- 
classical calculations have used larger lattices consist- 
ing specifically of 30 sites. In Fig. 1 we compare our 
semiclassical results with the fully quantum mechan- 
ical ones of Ref. [ 141. The larger oscillations in the 
correlated displacements away from the dip, in the 
semiclassical simulations, are due to statistical error. 
Indeed, it is found that as the temperature decreases, 
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the rate of convergence also decreases and thus many 
more configurations (at least six times more for the 
lowest temperature here) need to be collected. This 
parallels a well-known trend in the path integral Monte 

Carlo method. 
Three results emerge from the comparison carried 

out in Fig. 1. The first is that, at low temperature, 

the semiclassical model underestimates the average 

distortion induced by the quasiparticle excitation. The 
second is that, as temperature increases, the difference 

is reduced. The third is that, for the parameters used in 

the full quantum model [ 141, above T x 11.2 K the 
semiclassical model leads to approximately the same 
results as the fully quantum model. 

is equal or greater than shown in Figs. la and lb), 
the difference becomes negligible above 11 K, when 
the excitation is localized in essentially one site. The 
qualitative conclusion remains that the introduction of 

quantum effects in the lattice leads to stronger correla- 
tions between the excitation and the lattice distortion. 

We point out here that while we have chosen exactly 

the same parameters as used by Wang et al. [ 141, and 

have found almost identical results for the correlation 
between the position of the excitation and the asso- 
ciated lattice displacements, particularly at high tem- 

peratures, there is a subtle difference in the manner of 

calculation of the fully quantum mechanical and the 
semiclassical correlations. The sampling procedure in 
the fully quantum mechanical simulation involves a 

reduction of the wave packet in each Monte Carlo step 
and the calculation of the correlation is done after this 
reduction. In the semiclassical simulation no reduc- 

tion is performed and instead, for each snapshot, the 
maximum of the probability distribution is located and 
the lattice displacements around the maximum are av- 

eraged. A reduction of the wave packet will localize 
the excitation predominantly around the maximum, 

but occasionally it will also localize it in other, less 
probable, sites. These sites have displacements which, 
on average, are smaller than those around the maxi- 
mum. Thus, if the semiclassical correlation had been 

calculated exactly as in the quantum Monte Carlo sim- 
ulations [ 141 the semiclassical result would be even 

smaller than that calculated here. This would make the 
difference between the semiclassical and the full quan- 
tum correlation larger than is shown in the figure. The 
two ways of calculating the correlation become statis- 
tically equivalent when the excitation is very localized 

so that the reduction of the wave packet leads to an 
excitation localized at the maximum of the probabil- 
ity distribution. Thus, while this calculational differ- 
ence introduces an uncertainty in the exact amount by 
which the quantum correlation exceeds the semiclas- 
sical at very low temperatures (i.e. an amount which 

It is perhaps remarkable that the temperature above 
which our results show the semiclassical model to be 

practically valid is essentially the same as the tem- 

perature above which solitons are destroyed thermally 
according to the semiclassical Langevin simulations 

of Lomdahl and Kerr [ 41. It has been argued [ 141 
that the quantum results are in agreement with the lat- 
ter Langevin simulations. On the other hand, it has 

been shown [ 1 l] that those Langevin simulations are 
equivalent to Monte Carlo simulations [ 151 in which 

the postulate of a priori random phases for the wave- 
functions is violated [5], and thereby lead to an in- 
appropriate statistical treatment. The correlation be- 

tween the excitation and the lattice calculated in those 
Monte Carlo simulations decreases, in absolute terms, 

as the temperature increases [ 151. This is the reverse 
of what is found here and in the quantum Monte Carlo 

simulations [ 141. Thus, from this point of view, we 
conclude that the semiclassical Langevin simulations 
[4] and the quantum Monte Carlo simulations are at 

odds with each other. 
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