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1. INTRODUCTION AND SOME EXACT RESULTS

A simple but rich nonlinear structure that has received a great deal of attention in the last
few years is the quantum nonlinear dimer [1] in which a quasiparticle, such as an electron or
an excitation, shuttles back and forth between two sites while interacting so strongly with a
boson field, e.g. the vibrations of the system, that the quasiparticle evolution becomes
nonlinear. The discrete nonlinear Schroedinger equation in various forms has served as the
evolution equation for this structure [2]. The advantage of studying this small system lies in
the fact that insights into many issues of interest on extended systems can be gained without
having to grapple with the considerable additional complexities which extended systems
introduce into the problem. Much work has been done on the nonlinear dimer [3-6]. Here we
report on a few developments that have occurred recently in our investigation of the system.
They are (i) exact solutions for the quantum nonlinear dimer in the absence of dissipation,
(ii) a new approach we have constructed to analyze the thermal stability of nonlinear
structures, and (iii) bifurcation behaviour we have encountered in the interaction of the
dimer with a heat reservoir. The first two will be mentioned in the rest of this section and the
third in section 2. :

The Hamiltonian of the quantum dimer is, in terms of standard quasiparticle operators,
H=Vi+ gaﬁ(b*+b)+w(b*b+%) (1)

where V denotes the interaction matrix element for the quasiparticle transfer between the two
sites of the dimer, and g measures the coupling strength with the vibration of frequency w,
the destruction operator for the vibration quantum being b. We have put the (identical) site
energy of the two sites equal to zero and have put 7 =1. In the semiclassical approximation,
in which the vibration is denoted by the purely classical quantity y one can show [5] that (1)
results in :
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where p=p,, —Pn 5 ¢=i(Py —P2) ; ¥ =Py, + P . Among results reported earlier
regarding (1),(3) are stationary states [3], and the time evolution for the case of disparate
time scales between the vibrations and the quasiparticle: both for special initial conditions,
and for arbitrary initial conditions [4]. One of the new results we wish to comment on here
is solutions for the case when the time scale disparity does not exist. While valid only for
restricted values of the dimer parameters, they are exact. The technique of obtaining them [7]
is based on writing p as a function of y : p = f(y). The specific form of p as a three-term
series, allows the solution for the vibrational amplitude to be found in the form

y = y,cn(271k) in terms of appropriate dimer parameters, and

p =acn(Q1k) + ben® (Q1ik) (4a)
q = —Qsn(Qik)dn(Qrlk)[a + 3ben’ (Qrlk)] (4b)
r = ¢, +c,cn*(Q1lk) + c,en* (Q7lk) (4c)

We do not describe the meaning of the various parameters in (4) here but only draw attention
to the interesting form of the solution.

An important undertaking is the exploration of the effects of a coupling between the
quantum nonlinear dimer and a heat reservoir. Two quite different methods of attack suggest
themselves. One of them consists of a Langevin equation analysis: Computer simulations
[8,9] or analytic treatments [10,11] may be used to augment (3) through the introduction of
random noise terms. One of the new outcomes of such a Brownian motion analysis of
treating thermal reservoir interactions is the subject of section 2 below. A quite different
treatment has been developed recently by us in collaboration with Cruzeiro-Hansson and
Raghavan [12]. The basic idea is to evaluate the equilibrium partition function (and related
quantities) of the semiclassical quantum dimer, and follow a Gibbs approach to thermal
stability. Space considerations permit us only to point out that the partition function, which is
proportional to the integral Q

Q= f:dy e_%byz cosh(b vi+ y’) | (5)

where the dimensionless temperature b is half the ratio of the polaronic binding energy to the
thermal energy kT while v is the ratio of the band splitting to the binding energy. Equation
(5) possesses a very rich structure and leads to a powerful approach to the thermal stability
problem on the basis of an unexpected analogy to magnetic systems [12].

2. BIFURCATIONS

The Brownian motion analysis of interactions with the heat reservoir reat situations has
resulted in the fascinating prediction [13] of Hopf bifurcations. With the notation that Teq is

the thermal equilibrium value of r, and « is a rate which attempts to drive the system to the
thermal state, the underlying equations of motion are [11]:
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A high temperature expression for the rate representing fluctuations is & = (2 / T)kT .
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FIG. 1: Time evolution of the probability difference p(t) describing curious effects of thermal reservoir
interactions. The horizontal axis in all four frames is the time. The nonlinearity ¥ / 2V is larger than 1.
There are thus selftrapped states. The values of @ / 2V are as denoted by alpha in the four frames. As
«a / 2V is increased, one sees the appearance of bursts in the evolution of probability difference. These burst
On further increasing o / 2V , the bursts disappear at a critical value.

For vanishing a, the probability difference p oscillates and then tends to the stationary
value. As « increases, p tends to O at larger times even for large nonlinearities. This
represents destruction of the selftrapped structure by thermal fluctuations. As & increases
further, a rather interesting burst of p occurs for a short time, and the burst recurs after a time
period. The bursts become more frequent with further increase of ¢« and behaviour that
appears chaotic occurs. There is a limit cycle here which is destroyed by a further increase
in a. Stable dissipative behaviour is recovered. Stability analysis shows that the destruction
of limit cycles occurs for & > r, x /T". This bifurcation behaviour is reflected in predicted

features of several observables such as fluorescernce polarization in stick dimers.
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