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A Gibbs approach to the much studied problem of the thermal stability of nonlinear structures such
as Davydov solitons is used with focus on spatially extended systems. The systems studied consist of a
quantum-mechanical quasiparticle such as an electron or an excitation, interacting strongly with classi-
cal vibrations of the lattice, the entire assembly being in thermal equilibrium with a heat bath. The tech-
nique used for the study of thermal stability consists of the diagonalization of an N X N matrix where N
is the number of sites among which the quasiparticle moves, followed by M thermal integrations where
M is the number of vibrational coordinates with which the quasiparticle interacts. A basic duality
emerges regarding the effect of temperature on the stability of nonlinear structures: temperature is
found to help the nonlinearity in certain parameter and temperature regimes by inducing disorder and to
destroy the nonlinearity in other regimes, e.g., always at large temperatures as a consequence of
Boltzmann equalization. Particularly interesting features are found at low temperatures. A magnetic
analogy reported earlier for smaller systems is reinforced by the present analysis for extended systems.

I. INTRODUCTION

The purpose of the present paper is to investigate the
thermal stability of nonlinear structures such as the
Davydov soliton! ~3 which arise in condensed-matter sys-
tems in which a moving quasiparticle such as an electron,
or an electronic or vibrational excitation, interacts
strongly with a boson field such as the phonons of the lat-
tice. The method to be employed is a study of the equi-
librium partition function following the procedure set out
in a recent paper* which will be referred to as KC. The
system studied in KC was the simplest possible one, viz.,
a dimer, i.e., a two-state system. In this paper, we ana-
lyze larger systems. In Sec. II, we introduce the basic
models and explain the method of attack. In Sec. III, we
comment on the magnetic analogy which is at the heart
of our method. In Sec. IV, we consider systems of arbi-
trary size (arbitrary number of sites N among which the
quasiparticle can move) but restrict the analysis to cou-
pling to a single frequency of vibration. Particular cases
explored in detail are N =2, which makes contact with
KC, as well as N =4 and N— «. We also study in Sec.
IV, the N =4 system with coupling to a higher wave-
length mode, and a system we term the hypermer in
which the quasiparticle intersite interactions are indepen-
dent of site. In Sec. V, we investigate a different kind of
extension of KC, by allowing interactions with any num-
ber of vibrational modes but restricting the quasiparticle
to move between two sites only. Interesting features
which arise in the low-temperature regime of all systems
studied are the content of Sec. VI. Concluding remarks
form Sec. VII. The rest of this section provides the back-
ground for our study.

A well-known example of nonlinear structures that
have been suggested in biology and condensed matter is
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the Davydov soliton.!™® It has been used to address
transport, along proteins, of the free energy released by
the hydrolysis of adenosine triphosphate. That the ques-
tion of the thermal stability of these solitons at tempera-
tures of relevance is wide open is clear from the juxtaposi-
tion of the following two extreme comments in the recent
literature: (a) . .. the original soliton proposal does not
work at biological temperature. The “crisis in bioener-
getics” is still with us!,”’ (b) ... thermal vibrations not
only do not prevent the soliton transport of energy but
. . . become its necessary condition.”®

The surprising fact that such diametrically opposite
views are held in this field may be attributed to two
separate sources. One is the uncertainty in the values of
the physical parameters involved. The other is the con-
siderable variety in the nature of the theoretical ap-
proaches used so far to investigate the problem, along
with an almost complete absence of an understanding of
the interrelations among the diverse methods of attack.
It is very difficult (indeed, impossible, at the moment) to
understand why the approaches disagree (or agree) when
they do. The approaches have been basically five: (i) cal-
culations directly from the Hamiltonian of the interact-
ing system via perturbation methods,’ variational princi-
ples and other procedures,® " '° (ii) quantum Monte Carlo
calculations taking the full Hamiltonian as the point of
departure,!! (iii) Monte Carlo methods starting from the
semiclassical Hamiltonian in which the interacting boson
field is represented classically and the moving quasiparti-
cle quantum mechanically,'? (iv) numerical simulations of
the semiclassical model with stochastic interactions with
a thermal reservoir appended explicitly,>!*!* and (v) ana-
lytic calculations, via a Fokker-Planck treatment, of the
semiclassical model in thermal interaction with a reser-
voir. 1516
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One of the reasons for this diversity in the literature
stems from the fact that a thermal reservoir has two
different kinds of effect on a system: phase-space effects
and fluctuation effects. The former are associated with
the (Boltzmann) statistical weights for states of varying
energies, and arise from a consideration of equilibrium
statistical mechanics. The latter are associated with the
dynamics of fluctuations, and arise from a study of non-
equilibrium statistical mechanics. The treatment of
nonzero temperature by the introduction of a canonical
density matrix involving Boltzmann thermal weights,
typified by (i)-(iii), addresses the first of these effects but
not the second. Langevin or Fokker-Planck (generally
stochastic) methods, characterized by (iv) and (v), address
the second effect and also, as a byproduct, the first.
These latter, stochastic, methods are also able, in contrast
to the former, to address the approach to equilibrium and
not merely the nature of the equilibrium state. However,
they are considerably more difficult to implement, except
through numerical techniques. Surely, whenever proper-
ly interpreted, both approaches should yield the same
answers about the equilibrium state—in the present con-
text, about the stability of the soliton. However, the
inevitable approximations and assumptions necessary to
carry out the investigations lead to divergence in the re-
sults.

The important issue of the relations among the various
theories of thermal stability is being studied actively at
the moment and will be the subject of a future publica-
tion. As stated above, the present paper employs a Gibbs
analysis based on a study of the partition function of the
system, addressing thus the phase-space effects and the
equilibrium state directly from the Hamiltonian. We find
that the opposing effects of thermal interactions,
enhancement of nonlinear structures, and their destruc-
tion, both emerge as natural consequences of the underly-
ing physics, and manifest themselves in different tempera-
ture regimes. The conclusions drawn in the present pa-
per lend support to the approach to thermal stability sug-
gested in KC on the basis of a simple two-site system.*

I1I. BASIC MODEL AND METHOD
OF INVESTIGATION

Our study is limited to systems in which the semiclassi-
cal approximation is valid, the system we analyze being a
composite of a quantum-mechanical carrier of charge, or
excitation, or mass, moving in a lattice and interacting
strongly with its classical vibrations. Even after repeated
suggestions that the Davydov soliton and related non-
linear structures can explain a number of interesting ob-
servations, the challenging question®*!” of whether these
structures are really consequences of the fully quantum-
mechanical Hamiltonian of the system as stated, or the
artifact of an ansatz, is unanswered even at zero tempera-
ture. What is now evident is that the ansatz, which yields
the soliton, need no longer be couched in obscure terms.
One can state clearly that the Davydov soliton and relat-
ed evolution equations such as the discrete nonlinear
Schrodinger equation are zero-temperature consequences
of the semiclassical approximation, whereby the moving
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quasiparticle is treated quantum mechanically but the in-
teracting boson field (the vibrations) is taken to be classi-
cal. While this conclusion is clear to many,””19 it is made
particularly obvious in a recent demonstration.'® From
that analysis, or even from very early arguments such as
those of Holstein,? it is clear that the semiclassical model
does have the nonlinear structures as an exact conse-
quence. Knowing that they do occur in the semiclassical
environment, we would like to ask whether, and how
well, they last at nonzero temperatures in that environ-
ment. That is the question we address in KC and in the
present paper. In further stages of our investigation into
thermal stability, we will return to the question of the
range of validity of the semiclassical approximation in
the thermal context.
Consider the Hamiltonian

ﬁ:z emar:am + 2 Vm,nalan +2ﬁwq(b(;bq+%)
m m,n q

+N‘1/22ﬁwngexp(i¢1'm )(bq+b1q )a,]:,am .@n
q

It appears in a great variety of contexts and describes a
quasiparticle whose annihilation operator at site m is a,,,
interacting with vibrations of modes ¢ whose annihilation
operator is b,, the €’s and V’s being site energies and in-
tersite matrix elements of the quasiparticle, respectively,
the ’s being the frequencies of the vibrational modes,
and the g’s the quasiparticle-vibration coupling constants.
The quantities m and g are generally dimensionless vec-
tors, and N is the total number of sites in the system.
Henceforth, we put =1. The semiclassical assumption
replaces the vibration operators and their conjugate mo-
menta, viz.,

t 5t
ﬁzbq'ﬂ_’*q fr\:b—q _bq
¢ 2 iv2
by ¢ numbers y, and 7,, respectively. The Hamiltonian
of our system is then

(2.2)

ﬁ=26 ala +3>, ala +2-aﬁ-( +m,m_,)
m¥m>¥m mn=m™>=n 2 yqy—q q —q
m m,n q

+(N/2)T2 S w,g,e ™y ata,, . 2.3)
q,m

Our approach to the study of thermal stability is to de-
cide on an appropriate feature of our system, such as lo-
calization, select an appropriate observable O capable of
describing the feature, and calculate from the Gibbs
statistical-mechanics prescription the equilibrium average

value of O at any temperature T of interest:

. ffdyd‘n'Tr(ae‘ﬁ/k”T)
(on= YRR 2.4
ffdydfrTr(e B

where kj is the Boltzmann constant, the integrations are
over all the vibrational coordinates and momenta, and
the trace is over the quasiparticle states.

Equation (2.4) is the starting point of our semiclassical
investigation of the thermal stability of nonlinear struc-
tures. Our procedure consists of the diagonalization of
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an N XN Hamiltonian matrix and the evaluation of the
matrix elements of the operator O, followed by N thermal
integrations over the vibrational coordinates. The first
part of the procedure is quantum mechanical, and is easy
to do when N is small or the system is simple in some
other way. The second is simple or complex depending
on the outcome of the first. Even within our semiclassi-
cal approach, the full problem can be quite complicated
for arbitrary N. We are in the process of studying it by
treating the diagonalization exactly (not numerically) and
the integrations via Monte Carlo methods.?! However, in
the present paper, we restrict ourselves to two cases in
which the complexity of the problem can be reduced
significantly by simplifying each of its two parts in turn,
while keeping the other part fully general. In the first
case, the quasiparticle moves in a translationally periodic
lattice (crystal) of arbitrary size (N arbitrary), but in in-
teraction with vibrational modes of a single frequency
and coupling constant. For instance,

A=Y ea}a,+3 V,_,ala +2&(yy +m,m_,)
m>*m = m—n"m™>=n 2 q7 —q q”" —q
m s q9
+3 V2/N wigile™ ™y, +e *my_ata, , (2.5)
m

where the interacting modes are two: k and —k. In the
second case we allow interactions with an arbitrary num-
ber of vibrational modes but restrict the quasiparticle to
move between two sites only:

A=elala,+alay)+Viala,+ala))
©q
t2 5 Oy —gtmemy)
q
t2 wngyq(aJlral —ala,) . (2.6)
q

Both are generalizations of the simple dimer interacting
with a single vibration treated in KC and, as we will see
below, are amenable to analytic study.

III. CHOICE OF OBSERVABLE
AND MAGNETIC ANALOGY

The success of our approach in describing temperature
effects in our system is crucially dependent on the choice
of the observable O in (2.3). This choice should be guided
by the necessity to focus on the correlation between the
carrier and the vibrational field as the essential signature
of the nonlinear structures under investigation. A com-
plete explanation for the reasons for our choice, along
with a magnetic analogy on which it is based, are given in
KC. Here we mention the essential details, and restrict
the discussion to the extended systems we study in this
paper.

Consider (2.5), assume N to be even (for simplicity), let
the interacting mode be the 7 mode so that y, =y _, =y,
and, although the methods and results are easily general-
ized to arbitrary dimensions, take the crystal to be a one-
dimensional chain. It is straightforward to calculate the
eigenvalues and eigenvectors of the Hamiltonian. The
method?? consists of treating every two neighboring sites

as a cell, carrying out a Fourier transformation of the cell
index to wave vectors g, and diagonalizing the 2X2 ma-
trix for each g. The results for the eigenvalues Eqi is

w, —_—
Ef=3 <t} +mEV (goy)+V] (3.1

g=gk“ 8/N =g—k‘/8/N ’
0= =w_; , (3.2)
V,=2Vcos(q/2) .

The partition function Z of our system is obtained by
substituting the Hamiltonian (2.5) in the denominator on
the right-hand side of (2.4), and using (3.1):

+
> [ TayF,p.D
q -]

b

z= (21rkBT)N/2H(1/a)q)]
q

(3.3)

—(gwy)?/4ky T
c

F,(y,t)=e osh{V/(gwy)*+V2/ksT} .

(3.4)

The ground state of the Hamiltonian (2.5) can be studied
by taking the zero-temperature limit of the second factor
in Z. As expected, the ground state undergoes symmetry
breaking if the intersite interaction is sufficiently small.
In order to see this from (3.3), we write F (y,T) as an ex-
ponential and find its peak by differentiation with respect
to y. We do not display the details of the calculation.
They are similar to their simpler counterparts given ex-
plicitly in KC. The position y,, at which F (y,T) peaks
is the value of the 7-mode vibrational amplitude at T'=0.
It is given by

yi=g1—-(2V/g*)] . 3.5)

We thus see that the ground state of our system is
“dimerized,” i.e., the chain at T =0 consists of pairs of
sites in a state of contraction or expansion, the extent be-
ing given by y,. This dimerization only occurs if
2V <g’w». A plot of the distortion versus ¥ would thus
show a decrease with increasing ¥ and an abrupt disap-
pearance of the distortion at 2V =g2%»w. As elaborated
upon in KC, this suggests a magnetic analogy, the vibra-
tional amplitude y playing the role of the magnetic field.
In the dimer studied in KC, the probability difference be-
tween the two sites plays the role of the magnetization.
In the present extended system, that role is clearly played
by the appropriate Fourier component of the probability
of the quasiparticle. Generally, the observable we choose
as O in (2.4) is thus simply the variable conjugate to y in
the Hamiltonian (2.5),

p=(2/N)3 P,cos(km) , (3.6)

where P,, is the probability for the quasiparticle to be on
site m, and k is the wave vector of the vibrational mode(s)
which interacts with the quasiparticle. For the N-site
chain interacting with the 7 mode, (3.6) gives
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p=—(2/N)P,—P,+P,—P,+ -+ —Py). (.7

For the dimer (N =2), the correlation observable p be-
comes the probability difference between the sites whose
analogy to magnetization can be seen clearly.* The expli-
cit analysis given in Sec. IV below concerning a tetramer
(N =4) will also show clearly that the variable p as
defined in (3.6) does indeed correspond to a quantity akin
to magnetization, with different dipole strengths and en-
ergy differences arising from different eigenstates of the
quasiparticle.

IV. ARBITRARY SIZE OF CRYSTAL, INTERACTION
WITH A SINGLE VIBRATIONAL MODE

Our study of the thermal stability consists, as ex-
plained, of an examination of the temperature depen-
dence of (2.5). We have identified O in (2.5) to be given
by (3.6) for the system of arbitrary size interacting with
modes of a single frequency and coupling constant. In
order to evaluate (2.5), we require the eigenvectors of the
Hamiltonian as well as the eigenvalues given by (3.1).
The eigenvectors are also obtained from the method?? of
Fourier transforming the cell index and diagonalizing the
2 X2 matrix for each ¢ mentioned in Sec. III. The quan-
tities qu appearing in the unnormalized eigenvectors

|
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+ .
(1,C;") at each value of g are given by

ct —ga)yi\/(gwy 2+ qu .
q V(l+e™)

The factor (1+e9) appearing in (4.1) is not present for
the special case of the dimer, the reason being essentially
the same as the one for the dimer bandwidth being 2V
rather than 4V: the latter result applies for nearest-
neighbor rings with N >2. The correlation observable as
given by (3.6) is found to be

4.1)

1_|cqi12 z

p= T, T , (4.2)
1+[Cf| V22 +4vcos*(q/2)

=2, U:H, =28 . 4.3)
b4 X

Equation (4.2), when combined with (3.6) and (2.5), yields
an expression for the primary quantity in our analysis. In
terms of the dimensionless reciprocal temperature

2

S [ "dz exp(—pz?/2)(z/V/z +4v%c0s g /2)Isinh[BY 27+ 4vc0s%(¢ /2)]

{pn=-1

=X 80 4.4
B= S, T kT @4

the localization parameter { {p ) ) is given by
4.5)

> f0+wdz exp( —Bz2/2)cosh[BV z2+4v2cos*(q /2)]
q

The g summation is over N /2 integral multiples of 47 /N, and refers not to the vibrational mode but to the quasiparti-
cle wave vectors (Fourier modes). Needless to say, one must ensure that a trivial cancellation does not occur in the
thermal average in (4.5) because of the inherent symmetry of the available phase space. Following standard magnetic
treatments, we average only over half the phase space.

Equation (4.5) is one of our central results in this paper. Whether an increase of temperature enhances or destroys
the nonlinear structure can be studied by merely inspecting whether (4.5) results in an increase or decrease of the locali-
zation parameter { (p ) ). The integral in the numerator of (4.5) can be evaluated exactly in terms of error functions but
the one in the denominator requires numerical or approximate analytical evaluation. One of the approximate formulas
we have developed for (4.5) is

(B/2)(v2+1)
e q

> {erf[VB/2(v, +1)]—erf[VB/2(v,— 1]}

UpN= e e = — = , (4.6
3 {2 cosh(Bu, Jerf[ (v, /c)VB/2]} +eP2(2—erf(cv,V B/2+ 1V2B) —erf(cv,V B/2— 1V2B)} +M(B)

q

where v, = |2v cos(g /2)|, ¢ is a number which can be adjusted to increase the accuracy of the approximation, and /()
is given by
172
Bv}
4+ .
T

v 01/572
MBy=—1["

_ 4.7
Vi Jw,s0VEr2 4.7

2B

3
dx e * cosh

The larger the value of ¢ with respect to 1, the better the
approximation. The term J(SB) tends to O as c ap-
proaches 1, and is generally given at large temperatures
by

4
vV

2 2
MB)=—3=v, VB 2e "0 TEN | L 4.8)

For the figures we present, we carry out the integrations
numerically rather than through the above approxima-
tion, in order to ensure accuracy in all regimes. We now
study various particular cases of (4.5).

(1) N=2: Dimer. This is the case treated in KC. Itis
recovered from (4.5) by putting N =2 and making the fa-
miliar change 2V —V necessary to go from N>2 to
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N =2. The localization parameter is given by 1
—=(1,0,—1,0),
V2
fn+ “dz e ~1/2B Gnh(BV 25+ 02 )2 /V 22+ v2) %(o, 1,0,—1),
= — 2
o h f+°°dze_“/zwzzcosh(B\/zz+vz) 1 @.11)
0 =( 1,17, 1,1’) >
4.9) V2(1+7%)

1
V21+79%)
and the respective eigenvalues

goy, —gwy, V4V2+(goy)?, —V4Vi+(gay ),

and has been discussed in KC.

(2) N=4: Tetramer. It might be instructive in this
case to observe that ﬁim, the interaction part of the
Hamiltonian, may be written explicitly as

(_1’71’—7’71) ’

gwy 4 0 V where (4.12)
a.=|r &> V0 (4.10) 21172
int™ | 0 vV gwy V : 7= |1+ gwy _ 8wy (4.13)
vV 0 V —goy 2V v '

We plot in Fig. 1 the localization parameter {{p ) ) given

with the eigenvectors by the N =4 case of (4.5):

o fnﬂodz e_B(ZZ/Z)[sinh(Bz )+(z/V 22+ 4v?)sinh(BV 22+ 4v?)]
pN= fo+wdz e_B(ZZ/Z)[COSh(BZ)+COSh(ﬁ‘/22+4vz)]

(4.14)

A major conclusion from KC was the existence of a dual tendency in the effect of temperature on the nonlinear struc-
tures: an enhancement with an increase in temperature at low temperatures, followed by a destruction at high tempera-
tures. Figure 2(a), obtained from the three-dimensional plot of Fig. 1 by constraining the system parameter v to the
value 1.5, shows that the dual effect is present in extended systems as well. Figure 2(b) shows the v dependence of the
localization parameter for several values of the temperature.

(3) N— «: Infinite chain or ring. Equation (4.5) yields

f" f0+wdq dze —8(22/2)[2/\/22+4v 2cos2(q /2)]sinh[BV 2% +4v%cos®(q /2)]
f +ﬂf0+ “dgq dz e “P**2cosh[ BV 22+ 4v2cosi(q/2)]

UpN= (4.15)

in the limit that the number of sites in the ring becomes infinitely large, as the g summations in (4.5) become integra-
tions over a continuous variable. In Fig. 3, we show the dependence on size of the localization parameter and observe
no catastrophic occurrence as N is varied.

(4) Hypermer. We have given the above expressions for arbitrary N for the simple case of nearest-neighbor interac-
tions only for specificity. In the general case of arbitrary-ranged interactions, the simple cosine factors in (4.5) and
(4.15) are merely replaced by the appropriate Fourier transforms of the intersite interaction. There is an interesting
case which, while not physical for truly large systems, is of relevance in small systems: the hypermer.? It is character-
ized by equal intersite interactions among all the sites. We obtain

o - 2 — pr————
f0+ dze "2 V22 F v )sinh(B,V 22 +02)

+ o —B,(z2/2)
dze "
0

KpN= 4.16)

[cosh(B,V 22 +02)+(N /2— 1™ coshB, 2]

two sites.
(5) /2 mode in the tetramer. In all the above cases we

Equation (4.16) is very similar to that for the dimer in Eq.
(4.9). One of the differences is that B, =2g%w/(NkyT)

and v, =Nv /2 appear in (4.16) rather than 8 and v. The
other difference is an additional term proportional to
N /2—1 which appears in the denominator. For N =2,
the additional term vanishes and B, and v, become iden-
tical to B and v, respectively. Equation (4.16) then
reduces to (4.9) since a dimer is indeed a hypermer with

have considered the interacting vibrational mode to be
the one with the shortest wavelength, viz., the 7 mode.
The analysis of single-mode interactions increases in
complexity as the wavelength increases. We consider
here the case of the /2 mode in the tetramer. This is
not a particular case of (4.5). The interaction Hamiltoni-
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FIG. 1. Three-dimensional representation of the dependence
of the localization parameter {{(p)) on the dimensionless inter-
site interaction v (linear scale), and on the reciprocal of the tem-
perature T in units of kp/gw (logarithmic scale). The system
considered is a tetramer interacting with the 7 mode. See (4.14)
in the text.
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FIG. 2. Localization parameter {{p )} for a tetramer interact-
ing with the 7 mode plotted (a) as a function of temperature T
(in units of x/2ky =g2%w/kg) for the dimensionless intersite in-
teraction v =2V /y=V/g’w=1.5, showing the dual tendency
of {p ), and (b) as a function of v for k3 T/g’w equal to 0.022
(solid line), 0.8 (dashed line), and 4.9 (dot-dashed line).
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an for this mode can be written as

8r/2@x/2 4 j i
— /2 - 2
ﬁim—z a,a, ey, ,+e """/y;/z) ’

V2

m

(4.17)

from the N =4 case of (2.5). In terms of the magnitude
yu and phase ¢ of y_ ,, the interaction part of the Ham-
iltonian (4.17) is

ﬁim=zg,/zw,/z\/ialamyMCOS(m1r/2+¢) . (4.18)
m

The eigenvalues can be calculated in a straightforward
way:

172
2 2 2__ 22
E=12y 5+1ix/(i+21) Esin’(2¢) @19
where
£ =——*—gm‘j’-;;,2m : 4.20)

We shall now investigate four specific cases of (4.18):
¢=0,7/2,7/4, — /4.

The case ¢=0 shows from (4.19) that the eigenvalues
are

0,0, 2VV1+£, —2VV1+§%. @.21)
The eigenvectors are found to be
L(0 1,0,—1)
‘/5 b At b
—L (1618
2(1+§2) b -2 ] ’
(4.22)
—1——-—(1/1] 1,m,1)
2@ %y b b
— (1, —1,1/7,— 1)
2‘“1—_;._§2 b b ’ ’
=V 1+£—£. (4.23)

The expression for the localization parameter is
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0.6 Dy
N =
oS N = 16, N= 32
N\
A o4r N=8 ‘ FIG. 3. Effect of lattice size N on the locali-
é R zation parameter: {(p)) plotted as a function
v ) of T for the dimensionless intersite interaction
o3 N\ v =0.561 for various values of N as shown.
The case N— o is indistinguishable from the
case N=32.
0.2
0.1
ri s Aol 2 a2l " a2 aaaal M P
0.01 0.1 1 10
Fo/ kgT
+
[ 7" dz e 7B Dz /V 207+ 22 )sinh [ BV 2V 07+ 22
(pN=—2 (4.24)

f0+ “dz e~ /D{1+cosh[BV2V 202+ 2]}

If, in (4.18), ¢ =m /2, results identical to (4.21) and (4.22) are obtained except that the eigenvectors are all shifted by
one site:

1 1 1 1
( ’l’ ’—1)) (1, ,1,1/ ), _(1,_1/ ,1,— ).
V2 V2(1+8) b1.5 wite P s e 5

The expression for the localization parameter {{p )) is the same as in the previous case, viz., (4.24).
If =1m/4 in (4.18), the following eigenvectors are obtained:

_1——(1’7’],711’1) ’
V21+79})

1
—— (= Ln)
V 2(1+7%7)

1

—;—(197’1’_7’1’—1) ’

(1,0,—1,0), 4.25)

(4.26)

——-_.__—('q,, - 1, - 1,171) N
V21+793)

m=V1+£2—§, £=£6V2, (4.27)

the respective eigenvalues being

V(nl+§]+l)’ '_V(T,1+§l+1), V(771+€l_1)’ _V(ﬂ|+§1_l) . (4,28)

For the case ¢ = — /4, the eigenvalues are the same as in (4.28) and the eigenvectors are found by interchanging the
second and the fourth elements of the eigenvectors in (4.26). For both these cases, one obtains, for the localization pa-
rameter

+ e
[, e =(sinh{(B/V2)[V'(v/V2) +22+v /V2]} +sinh{(B/V2[V (v /VDP+22—v /V2]})

-z
Vv /V2)P+z

«p»= +® Vv ;7
fo e P (cosh{(B/V2)[V (v/ 2)*+2%+v/V2]} +cosh{(B/V2)V (v /V2)P +22—v/V2]})

4.29)
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We do not show the corresponding plots for the localiza-
tion parameter because they are similar in appearance
and characteristics to those shown in Figs. 1 and 2. The
conclusion to be drawn from the results in this section is
that the insights gained in the thermal stability problem
from the simple two-site analysis in KC are reinforced by
a study of the spatial extensions treated here.

V. ARBITRARY NUMBER OF VIBRATIONAL MODES,
TWO QUASIPARTICLE SITES

In this section, we study an extension of the simple di-
mer of KC which is different in spirit from that in Sec.
IV. The size of the crystal is restricted to two sites but
the quasiparticle is taken to interact with an arbitrary
number of vibrational modes with coupling constants
which are different for the two sites. The Hamiltonian is

J

given by (2.6), and is a simpler version of

A=elala, +ala,)+viala, +ala,)
Dq
T2 5 by tmmy)
q
+3 0,3,(81,818, +85,210,) (5.1)
q

obtained by taking the coupling constants g,, and g,, to
be of the same magnitude g, but to differ in phase by 7.
The dynamics of such dimers has been studied in the past
in a variety of ways, including via the calculation of
memory functions,?* dressing transformations,?® and sto-
chastic methods.?® While the dynamics possesses consid-
erable complexity, we will see that the Gibbs analysis of
the localization parameter is extremely simple.

The interaction part of the Hamiltonian in (5.1) can be
written as

2 mq(gquRq —814Y1q ) |4
q
A, = v _ _ , (5.2)
2 wq(gquRq glquq )
q

where we have displayed explicitly the real and imaginary parts of the displacement y, (denoted, respectively, by R and
D and have also taken the coupling constant g, to be generally complex. The eigenvalues and eigenvectors are found as
in Sec. IV. The eigenvalues are

()
EX=3 Tq[y,gq +yi tmm_ ]t [V2+ [2 0, (8RrgYRg —81g¥1) ]2 ] 12 (5.3)
q q

The correlation observable is

E wq(gquRq _glqqu )
9

p== - - (5.4)
\/ S ©,(8reVrq —gzqyzq)] +V
q
The definitions
© 1/2 g »
o= [2(05 12, g= |3 (gryt81) —mi , fq‘—‘;q—\/coq/w, zq=—gix/coq/w , (5.5)
q q
and
2
2V
=2 2 , — X o g w , == 5.6
X=2e B T T VT 5.6
lead to the following expression for the localization parameter:
B ‘2 quZRq “flqzlq ‘
d d — ¢ 2 + 2 9 si 2 _ 21172
fIqI “RaE1g XD 2 [gqu zjq] [Uz+ [szquq —f1g 7y sinh |B[U " [%quZRq fqu}q] ] ’
UpN= g (5.7)
f I1 dzr,dzr,exp —g [2 z8,tzf, ] cosh ‘B [v2+ [Efxqqu —f1a21g ]2 ] ‘/ZI
q q q

Equation (5.7) appears to be quite complicated and to require multiple numerical integrations. However, a major
simplification occurs if we introduce a transformation from z, to new variables Z,. The transformation is linear and
corresponds to a formal rotation of the z,’s into the 2, ’s, the quantity Eq(z}!q +z ,Zq ) being the invariant length of the ro-



49 THERMAL STABILITY OF DAVYDOYV SOLITON 9519
tated vector. We choose one of the quantities Z,, to equal 3, frezrs —f1g214"

2,=2 freZrg —f14214 - (5.8)

q
Equation (5.7) is then transformed into
f [Idz,exp |— %32 22 |sinh(BV/22+v2)(2,| /V'Z 3402
¥ 14
KpN= . (5.9)
f I1dz,exp | — 532 Zi cosh(B\/Zf +v2)
14 Y

The convenient feature of (5.9), viz., the appearance of a single 2, in all expressions except the exponential, allows the

simplification of (5.9) to

+w —(172)822
f dze !
Q

sinh(BY/22 +v2)(z, /V 22+0v?)

€p = +o  —(1/2)p2?

. dze cosh(BV/ z2+0?)

Expression (5.10) is identical to the expression for the
localization parameter for the dimer, (4.9). The seeming-
ly complex problem presented by the infinite number of
modes in (2.6) is thus solved exactly. The thermal
behavior of the nonlinear structures is identical to that
discussed in Sec. IV. It is interesting to note here that,
although the coupling constants g, have been taken to be
differing in sign only between the two sites, the result
(5.10) obtains for a more general case wherein g,, and g,,
differ from each other by an arbitrary phase.

The KC analysis is thus reinforced in that it is un-
changed in essentials or in detail when the vibrations
which interact with it are spread over a realistic band
rather than being concentrated in a single model.

VI. NOVEL FEATURES AT LOW TEMPERATURES

The primary question addresseéd in this paper has been
about whether increasing temperature aids or hampers
the nonlinear structures. Plots such as those in Figs. 1-3
show clearly that the effect is to help the nonlinearity at
low temperatures and to destroy it at larger tempera-
tures, the demarcation temperature being T, at which the
localization parameter {(p)) has a maximum. We will
now show that curious new effects can occur at low tem-
peratures. Although the effects appear in all the systems
studied, we will illustrate them only for the case of the
two-site system.

In Fig. 4, we display the localization parameter {p )),
given by (4.9), as a function of the system quantity
v=2V/g%» for T=0. The dashed lines separate the v
axis into three regions. In the rightmost region v >1,
shown in Fig. 4 as region III, the localization parameter
{(p ) starts off with a O value for T=0. The tempera-
ture effect is to make it increase from the O value for
small temperatures. In the leftmost region, shown in Fig.
4 as region I, v <0.52 and the localization parameter
starts off with a nonzero value. A study of (4.9) shows
that the temperature effect in this case is to make (p))
decrease from its 7 =0 value throughout the temperature

(5.10)

range. Of the dual tendency of ({p)) that we have men-
tioned in Secs. IV and V, only the second aspect, that of
the destruction of the nonlinearity is seen in this case.
The zero-temperature localization is already so large that
only the Boltzmann equalization effect as temperature in-
creases is visible. Figure 5(a) makes this clear.

Interesting features surface from an investigation of
{p) in the middle region II in Fig. 4. For vo<v<]1,
where v,=0.52, {(p)) decreases from its T =0 value at
low temperatures as in Fig. 5(a) but hits a minimum at a
temperature we call T,. It then increases, reaches a peak,
and then decreases at large temperatures. A three-sided
curve as in Fig. 5(b) results. The dependence of the
trough temperature T, and the peak temperature 7, on
the system parameter v clearly contains important infor-
mation about the thermal stability of the nonlinear struc-
ture. Figure 6 displays this information. We see that,

. I 11 III
1.0 _\
0.8]
X 0.6]
2
v
v -
0.4
0.2]
0.5 1.0 1.5 2.0

FIG. 4. The three v regions which correspond to different T’
variations of the localization parameter {(p)) at low tempera-
tures. The system described is the dimer as given by (4.9). The
T dependence of {p )) in v region III, i.e., for v > 1, exhibits the
dual tendency shown in Fig. 2. However, the temperature
dependence differs in the other two regions, as is clear from
Figs. 5 below.
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below v =wvy, there is no T, or T, since the {(p)) curve
decreases monotonically as in Fig. 5(a). Atv =v,, T, and
T, make their appearance. As v increases beyond v, T,
decreases while Tp increases. As the middle region ends,
i.e,, when v 21, T, tends to O and disappears, while T,
continues its upwards march. The disappearance of T,
corresponds to the ground state of the system being delo-
calized rather than selftrapped, i.e., to {{p)) at T =0 be-
ing 0.

At v =v,, the trough temperature 7, has its maximum
value, the peak temperature T}, has its minimum value,

1.0]
0.9]
A
% 0.6
Yo.8
0.7]
0.2 0.4 0.6 0.8 1.0
ksT/g*w
0.75]
0.70]
A
A
2,
N4
A\
0.65]
0.2 0.4 0.6 0.8 1.0
kpT/g*w

FIG. 5. Temperature dependence of the localization parame-
ter {(p) in the v regions II and III: (a) v=0.216, the system
lies in region I, and one sees a single tendency, viz., a decrease
of ((p)) with an increase in T; (b) 0.696, the system lies in re-
gion II, and one sees a decrease in localization followed first by
an increase, and then by an eventual decrease.
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and T,=T,=T,. It is interesting to observe that this
characteristic temperature T, is below 1 K for parame-
ters believed to be representative of the a-helix® and in
the range 30-100 K for parameters deduced for photoin-
jected carriers in napthalene.?’” The significance of these
estimated values is that the novel features of the tempera-
ture dependence discussed in this section can be unimpor-
tant if T, is very small since the additional aspect, the
trough, appears only for temperatures below T;. For sys-
tems in which T, is well below temperatures of experi-
ment, the dual tendency consisting of the rise of the non-
linearity at low temperatures followed by its destruction
at high temperatures is all that would be discernible in
observations.

VII. CONCLUSIONS

The broad aim of the investigation whose results we
have reported in this paper is to help decide whether non-
linear structures such as the Davydov soliton, which have
often been postulated to explain observations in biologi-
cal and condensed-matter systems, are merely the result
of an academic exercise, of little use to experiment, or
whether they are bonafide constructs from an observa-
tional point of view, particularly at the temperatures of
experiment. The specific aim of the work presented in
this paper has been to extend the thermal stability study
initiated in a previous paper (KC) to systems more realis-
tic than the dimer.

Our starting point is the semiclassical Hamiltonian
(2.3) which is obtained from (2.1) via the assumption that,
for the systems we consider, the vibrations of the lattice
may be considered to be classical. The moving quasipar-
ticle is treated fully quantum mechanically. Our focus is
on two kinds of extension of the dimer studied in KC:
systems in which the quasiparticle moves among a crystal
of arbitrary number of sites but interacts only with a
finite (small) number of vibrational modes, and systems in
which the number of interacting modes can be arbitrary
but the crystal size is small, i.e., N =2. Equations (2.5)
and (2.6) describe these systems, respectively, and Secs.
IV and V contain the respective treatments. Our general
finding is that the present study of these soluble exten-
sions of the dimer bears out the conclusions drawn in KC
from a study of the simple dimer interacting with a single
vibrational mode.

Our approach to thermal stability consists of a careful
definition of a correlation observable which measures the
extent of nonlinearity, followed by an evaluation of its
thermal average (which we call the localization parame-
ter {(p))) and an examination of its temperature depen-
dence. Section III explains the reasoning behind our
choice of the correlation observable along with the mag-
netic analogy which it entails, and equations such as (4.5)
and (5.9) give explicit expressions for the localization pa-
rameter. We have studied the temperature dependence of
the localization parameter for a variety of systems de-
scribed in Secs. IV and V, and have found that it consists
generally of a characteristic rise followed by a drop as the
temperature is increased. @ The rise represents
temperature-induced disorder and the eventual drop,
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FIG. 6. The v dependence of the trough
temperature 7, (dashed line), and the peak
temperature 7, (solid line), at the local
minimum and maximum of {(p )), respectively.
Neither T, nor T, exists for v <v,. Beyond
v=1, T, disappears while T, increases in an
approximately linear relation to v.
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which is always present at sufficiently high temperatures,
represents Boltzmann weight equalization. At low tem-
peratures, further subtleties can occur for the appropriate
system parameters. If the system is strongly localized al-
ready at T =0, the localization parameter shows only the
single tendency of a drop, as T increases, rather than the
Janus-like two faces.?® If the system is localized at T =0,
but not too strongly, it is possible to see a decrease of lo-
calization, followed by an increase, followed by the ines-
capable decrease. The dependence of the trough and
peak temperatures corresponding to this behavior on sys-
tem parameters is seen in Fig. 6.

The crucial role played by the selection of an appropri-
ate correlation observable can be appreciated from an
analysis of an alternate observable, viz., py, given in KC.
That analysis, which we will not repeat here, shows clear-
ly that such alternate observables do not exhibit the dual
nature of the temperature effect. It appears that such a
situation arising from a different choice of observable has
occurred in some earlier investigations reported in the
literature.

At the heart of our approach to thermal stability is the
magnetic analogy which has been mentioned in Sec. III
and explained in greater detail in KC. The quantities in
our problem which correspond to the magnetization and
the magnetic field are, respectively, the localization pa-
rameter {{p)) and the vibrational amplitude y. The anal-
ogy, however, is not straightforward. One of the impor-
tant differences is that the effective value of y is itself de-
cided by the temperature in our problem whereas, in the
magnetic case, the applied field is imposed externally, and
is not dependent on the temperature. Another difference
has to do with the fact that it is convenient to compare

the zero-temperature v dependence of {(p)) of our sys-
tem to the zero-field temperature dependence of the mag-
netization of the respective magnetic systems. Among
the similarities is the relation which exists between the
correlation observable (the magnetization) and the vibra-
tional amplitude (the magnetic field). This relation is pre-
cisely the content of the mean-field assumption in a
mean-field theory of ferromagnetism. In our problem the
relation is exact, is a consequence of the Hamiltonian,
and is typified by (4.2). Unlike in the magnetic problem,
the relation is not linear except for very high values of
the vibrational amplitude.

The analysis in this paper has treated extensions of the
dimer model presented in KC. As we have seen, it fully
supports the findings of KC. However, one should not
overestimate the significance of this support: the exten-
sions we have considered here all possess a certain kin-
ship to the dimer. Even in the case of the spatial exten-
sions considered in Sec. IV, we see dimerlike expressions
such as (4.5). A number of further extensions which we
have analyzed but not discussed in the present paper also
result in dimerlike expressions. The fact that only one or
two modes with a single frequency of vibration interact
with the quasiparticle is responsible for this result. Ana-
lytic ease is lost as soon as we drop this restriction. We
are then forced to adopt Monte Carlo procedures, which
we hope to report in a future publication.
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