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Strong interactions with phonons cause nonlinearity to appear in the evolution of quasiparticles

such as electrons, or electronic and vibrational excitations.

Our study of the evolution of such

nonlinear quantum systems, when they are placed in contact with a thermal reservoir, has been
found to exhibit rich behavior including a Hopf bifurcation. The nature of this bifurcation is studied

and experimental manifestations are indicated.

I. INTRODUCTION

The purpose of this paper is to report some interest-
ing behavior we have observed in a simple model that
has recently undergone intense analysis. The model is
the quantum nonlinear dimer.'™ It represents a quasi-
particle such as an electron or an electronic or vibra-
tional excitation ringing back and forth between two
states, such as two sites on a molecule, while interacting
strongly with vibrations. The interaction with vibrations
is strong enough to introduce nonlinearity in the mo-
tion of the quasiparticle, the nonlinearity being particular
to equations such as the discrete nonlinear Schrédinger
equation® (DNLSE) and to objects such as the soliton or
the polaron.® The two-site system (dimer) has intrinsic
interest both because it is an often tractable representa-
tion of more complicated spatially extended systems and
because it corresponds directly to several experimentally
realizable objects.1'378

The striking observation that we report in this paper
is the appearance of a Hopf bifurcation in its evolution.
The equations of motion which result in this interest-
ing behavior were derived by Kenkre and Grigolini® via
a Fokker-Planck method followed by a contraction pro-
cedure to obtain closed evolution equations for average
quantities,

dp

= 1.1
ikt (1.1a)
% = —p—xpr+ %qr — ag, (1.1b)
& = xpa - X —alr — 1), (1.10)

where p, ¢, and r are ensemble averages, i.e., mixed-state
counterparts of the respective pure-state quantities

p =la|? = le2|?  d =i(eic; — cach),

r’ = ¢yc3 + cacy, (1.2)

and ¢; and c; are the probability amplitudes for the par-
ticle being at sites 1 and 2, respectively. Equations (1.2)
will form the point of departure of the analysis in the
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present paper. We refer the reader to Ref. 9 for the
details of their derivation but point out here that they
arise from the following coupled Schrodinger equations
describing the evolution of the amplitudes ¢; and c; at
sites 1 and 2 coupled to the vibrational modes z; and z5,

id
z—f =Vey + Exqcq, (1.3a)
idctz = VCl + EQ)zCz, (13b)

where V is the intersite transfer matrix element of the
quasiparticle and E characterizes the coupling between
the quasiparticle and the vibrations. The dynamics of
the vibrational modes is given by

dz,,

dt?

The right hand side of the above equation describes the
strong interaction between the quasiparticle and the lat-
tice vibration which shifts the equilibrium position of the
oscillator by the amount proportional to the probability
of occupation of the state by the quasiparticle. The in-
troduction of dissipation, the incorporation the thermal
bath via standard techniques, and the elimination of the
vibrational degrees of freedom in the limit of high damp-
ing lead to the following equation for the probability dis-
tribution o(p, g, 7;t):°

+ w?z,, = —(const)|c,|?], m=1,2. (1.4)

do(p,q,7;1)

ot = Lo(p,q,r;t), (1.5)

with
a 0 0 7]
L=2V (pa_q—q6—p> +xp(ra—q—q5)

Vo (0 o
r X¥\%ar " "3q
oxksT [, & 0 08 8 ,0%
r (T 8q2 3qT3rq quarr+q 8q2 )’
(1.6)

—+
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The exact consequence of (1.6) is the following set of
coupled equations for the thermal averages of the vari-
ables p,q,r and their higher moments:

X8 _ 9v(a), (1.72)
%j—) 2V (p) ~ x(or) + DX (ar) ~ala), (17H)
%) — xtoa) ~ X (%) - afr). (17

A contraction procedure and the use of the explicit ex-
pression for the stationary solution of the Fokker-Planck
equation (1.5) finally lead to Egs. (1.2) which form our
starting point.

The equilibrium value req, which is the difference in
probabilities of occupation of the two quantum states
accessible to the system, should be generally given as!®

= tanh (kZT) = tanh (%) .

The last equality is based on an approximate description®
for a, viz.,

(1.8)

_ xksT

e (1.9)

The system (1.1) reduces to the one describing the triv-
ial linear dimer if x = 0 = a, to the high-temperature
damped linear dimer if x vanishes but o does not, to the
nonlinear adiabatic dimer if x is finite but I' infinite and
a vanishes,!™® to a relatively crude extension'! of the
nonlinear dimer to dissipative situations if x is finite, I’
infinite and req vanishes, and to the nonlinear nonadia-
batic dimer if x and I are finite and o vanishes.?

II. NUMERICAL INVESTIGATIONS
OF EVOLUTION

A study of Egs. (1.1) through numerical integration
uncovers a multitude of phenomena. Consider the case
when the quasiparticle occupies one of the two states ini-
tially. For vanishing a, the probability difference oscil-
lates and then tends to the stationary value which is zero
if the nonlinearity parameter is small enough, and finite
(corresponding to a localized state) if it is large enough.
In the latter case, as « increases, the detrapping effect is
seen: p tends to zero at larger times even for large nonlin-
earities [Fig. 1(a)]. In addition to these earlier findings,?
we find that, as a increases further, a surprising bursts
of p occurs for a short time, recurring after a time period
[Figs. 1(b,c)]. The bursts become more frequent with
further increase of a and behavior that appears chaotic
occurs. Plots of the time dependence of r depict related
behavior. For larger values of a, after some time, a limit
cycle behavior has been reached: p, q, and r oscillate
steadily (Figs. 2). A further increase in a destroys the
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FIG. 1. Time evolution of p the difference between occu-
pation probabilities of the two sites for x = 1 = I'. (a)
o = 0.002, (b) a = 0.005, (c) a = 0.01.
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FIG. 2. Time evolution of the variables p, ¢, and r, respec-
tively in (a), (b), and (c) for x =1 =T and a = 0.33.
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limit cycle, and stable dissipative behavior is met, as p
and ¢ tend to vanishing values while r tends to 7¢q (Figs.
3 and 4).

The reason for the rich behavior that emerges from
Egs. (1.1) when rq is taken to be nonzero is quite sim-
ple: This term serves as a driving agent in the nonlinear
system. Interplay between temperature-dependent driv-
ing and temperature-dependent dissipation lead then to
the observed phenomena. A full analysis is given in the
next section.

III. BIFURCATIONS
OF STEADY STATE SOLUTIONS

The set of nonlinear equations (1.1) has the unique
stationary solution
Ppo=0, g =0, 70=req- (3.1)

The character of this solution (its stability) depends on
the values of the relevant parameters o, x, T, and 7eq.
To analyze the stability, we simply investigate trajecto-
ries starting from the points close to the stationary so-
lution, so close, that we can linearize the system. The
resulting equations, being linear, are easy to investigate:
If the eigenvalues of the linear problem all have negative
real parts, points initially close to the stationary solution
evolve towards it—the stationary solution is stable. Lin-
earizing the equations around the stationary solution, we
find that the eigenvalues of the linearization matrix are
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FIG. 3. Same as Fig. 2 but for « = 0.9.
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FIG. 4. Same as Fig. 2 but for o = 3.5.

given by
Lix X ’
/\1,2 = 5 f'f‘eq —a+ 'f”'eq —Q - 4(1 + Xreq) )
(3.2a)
,\3 = —qQ. (32b)

Equation (3.2) show that the stationary solution is stable
for sufficiently large values of the damping o, when the
dissipation is large enough to overtake the influence of the
thermal driving proportional to req. From the explicit
formulas given above, we find this condition to be

a> Xreq. (3.3)

r
We thus see that there is a critical demarcation value of
« which separates stable from unstable regions.
Imaginary parts of the pair of the eigenvalues A1, Az de-
termine the way the equilibrium position is approached.
If the imaginary parts vanish, which is the case for large
enough «a,

a> %req +2(1 4 XTeq) %, (3.4)

the approach of the p and q variables to their equilibrium
value is monotonic (for large time) as illustrated in Fig.
4 where the time evolution of the variables p, ¢, and 7 is
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shown. Phase space trajectory, projected on the p-g and
p-r planes, is presented in Fig. 5(a).
For

zreq +2(1+ xreq)l/2 >a> %req, (3.5)

r
the real parts of A, are still negative, but their imagi-
nary parts do not vanish any longer and the motion to-
ward the equilibrium takes a spiraling form in the p-q
plane [Fig. 5(b)]. The time evolution of each of these
variables exhibits oscillations before settling down to the
zero equilibrium value (see Fig. 3). The third eigenvalue
A3, which governs the rate of equilibration of the variable
r to its stationary value 7eq, is always real (and negative).
As a result approach of the equilibrium along this direc-
tion is monotonic (after large enough time).

At a = ag = xTeq/T the stationary solution loses its
stability (the real part of A\, ; eigenvalues becomes zero
and positive for even smaller values of a). The inter-
play between dissipation (characterized by a) and ther-
mal excitation (measured by r.q) becomes more subtle.
The excitation is strong enough to sustain oscillations in
the system with nondiminishing amplitude. The equi-
librium solution bifurcates to a periodic solution (Hopf
bifurcation). The stability of the periodic solution can
be also investigated by analyzing behavior of neighbor-
ing trajectories. Technically, such an analysis is more
complicated than that of the stability of stationary solu-
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FIG. 5. Phase space plots of the trajectory in the p-g and
pr planes for x =1 =T. (a) a = 0.33, (b) a = 0.9, (¢)
a = 3.5.

tions, but conceptually it consists also in a linearization
of the system in the vicinity of the periodic trajectory. It
can be proved, using the algorithm given in Ref. 13, that
the Hopf bifurcation leads in our case to the emergence
of a stable limit cycle, which attracts neighboring trajec-
tories as illustrated in Fig. 5(c). Observe that, due to the
fact that the rate of dissipation a becomes smaller when
going from Fig. 4 through Fig. 3 to Fig. 2, the actual
time after which the system reaches its equilibrium state
(stationary as in Figs. 4 and 3 or an oscillatory one as in
Fig. 2) is longer and longer.

According to the general theory of the Hopf bifurca-
tion, for values of a not far from the bifurcation value
apy the amplitude of the oscillations grows as /o — ag
when a departs from its bifurcation value ay, whereas
the frequency of the revolution along the closed orbit is
approximately given by the value of the imaginary part
of the eigenvalues A; ; at the bifurcation point ag.!® As
a goes farther and farther from the bifurcation value,
nonlinear effects start to play more important role and
the amplitude starts to shrink after taking the maximum
value at (approximately) a = 0.33. The dependence of
the limiting closed orbit on the value of « is illustrated
in Fig. 6. We plotted here the values of the variables
D, ¢, and 7 only for times long enough to reach the orbit,
skipping the initial approach to it. The plots show p-q
and p-r projections of the orbit.
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FIG. 6. Trajectories in the p-q and p-r planes for times long
enough for the system to reach the limit cycle. (a) a = 0.8,
(b) @ =10.33, (c) a = 0.01. In all three cases x =1 =T.
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The long time evolution of the variables for o = 0.33 is
shown in Fig. 7. The regular oscillatory patterns suggest
a simple analytic approximation to the real evolution on
the limit orbit (i.e., after reaching it), consisting of taking
into account only the lowest harmonics of the periodic
motion. Indeed postulating

p = py cos(wt), (3.6a)
g = qu sin(wt), (3.6b)
r = ry sin(2wt) + 73 cos(2wt) + 73, (3.6¢)

substituting this to the original nonlinear system of equa-
tions, neglecting higher harmonics, and comparing the
coefficients of sin(wt), cos(wt), sin(2wt), cos(2wt), and the
constant terms, we arrive at a nonlinear algebraic system
of equations for py,qg,r1,72,73 which can be solved in
the form

1 [-2T
qH = —WPH, (3.7b)
_ a al'p
Ty = m (—ZJ— - 2(1)) C, (3.7C)
(84
Ty = m (CY - 2Fp) C, (37d)
r3 = C + Teq, (3.7¢)
with
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FIG. 7. Long-time evolution of the variables p, q, and r,
respectively in (a), (b), and (c) for x =1 =T and a = 0.33.
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(w? - p?)(4w? + a?)

= 3.8
x(4p —Ta) + xa(l + xreq)(a — T) (38)
and
p=1/14 XTeq- (3.9)
The frequency w is a solution of the equation
40° + §a2 —4p% + (4T — ) (KT - a) wt
2 r=
%a®p® 3 ,,
+[ 2 2%f
+Tap(a —T'p) (%req - a)]wz
2.2 4
_r "; P~ _o. (3.10)

Observe that, at the bifurcation point, i.e., for a = ag =

XTeq/T', the above equation reduces to

I‘2a2 2

_~£_> —0.
2

3
(w? - p?) (4‘4)4 + §a2p2w2 + (3.11)

One of the solutions of Eq. (3.11) is p = /1 + XTeq,
which is the imaginary part of the eigenvalue A ; at the

bifurcation point in accordance with the general theory
of the Hopf bifurcation. Continuation of this particu-
lar branch of solution of the Eq. (3.10) for a < ap
gives the desired approximation. Moreover, a simple
calculation shows that the amplitudes of the neglected
higher harmonics are indeed small when compared with
PH,qH,T1,T2, and thus reassures us that the procedure
is self-consistent. The quality of the described approxi-
mation is illustrated in Fig. 8 where the exact numerical
solution of the system is compared with our approxima-
tion. The figure corresponds to the value of a = 0.33,
which gives the maximal amplitude of the oscillations.
Further numerical investigations have shown that this
value corresponds to what is actually the worst approxi-
mation. The accuracy of our approximation is, therefore,
rather satisfactory as is visually obvious from Fig. 8.
Further numerical investigation show that, when the
dissipation parameter a is diminished further, the am-
plitude of the oscillation is also diminished, but that the
limiting stable orbits persists. As a tends to zero, the os-
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FIG. 8. Comparison between exact (solid line) and ap-
proximate (dashed line) limit-cycle trajectories for a = 0.33,
=1=T.
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cillation amplitude also tends to zero, but equilibration
takes forbiddingly long time to complete. The evolution
of the system is dominated by transients during which
trajectories explore various regions of the configuration
space of the variables p, ¢,r. This exploration, from time
to time, takes form of sudden “bursts” separated by more
“laminar” phases.

IV. CONCLUDING REMARKS

As we have seen above, despite its apparent simplic-
ity, the quantum nonlinear dimer contains a multitude
of interesting physics, particularly when it is in interac-
tion with a thermal reservoir. The starting point of our
analysis in the present paper has been the coupled equa-
tions of motion (1.1) derived by Kenkre and Grigolini® on
the basis of a Brownian motion treatment of the quan-
tum nonlinear dimer. It has been suggested* that the
equation appear to be reasonable and capable of unify-
ing various tendencies of the nonlinear dimer in different
parameter regimes. Since a completely rigorous justifi-
cation of the truncation of the coupled hierarchy (1.7) is
not available, it is not inconceivable that Egs. (1.1) are
inaccurate. However, the derivation and examination of
the range of validity of Egs. (1.1) are not the subject
matter of the present paper. We have been interested
here only in exploring their consequences.

These consequences have been found to be exciting,
particularly in that they involve bifurcation behavior.
We have shown the bifurcation to be of the Hopf kind.
As shown by Eq. (1.9) variations of the rate a are con-
nected simply to temperature variations. Bifurcations
correspond, therefore, to specific temperature values, and
the interesting behavior depicted in Figs. 6 and 7 can be

accessed, in principle, by simply changing the tempera-
ture.

The rich low-temperature behavior noted in Secs. II
and III would be reflected in a number of experimen-
tal observables. Here we merely indicate that fluores-
cence depolarization of stick dimers would be one of the
more convenient observational setups to test our findings.
While we refer the reader to Ref. 1 for details, we point
out here that the crucial quantity is the fluorescence de-
polarization ratio f given by the ratio of the difference
and the sum of intensities of emitted light with polariza-
tion direction respectively parallel and perpendicular to
that of the incident light. This quantity is given by?!

f(t) = p(t) cos 2¢ + r(t) sin 2¢, (4.1)
where ¢ is the angle made by the polarization of the inci-
dent light with the induced dipole moment on one of the
two molecules forming the dimer. The angle ¢ is control-
lable. The bifurcation behavior present in p(t) and r(t)
will thus be directly reflected in behavior of the exper-
imental observable f(t). For the values of a above the
bifurcation value, when p(t) and r(t) tend to constant
stationary values, f(t) will also tend to its final asymp-
totic (constant) value, whereas for a below the bifurca-
tion value, in accord with Egs. (3.6) and (4.1), f(t) will
ultimately reach a periodic regime dominated by the fre-
quency w given by Eq. (3.10). We hope that the analysis
presented here will stimulate experimental efforts which
could uncover the rich bifurcation behavior that appears
to present even in simple quantum nonlinear systems.
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