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Thermally Induced Limit Cycles in the Nonlinear Theory of Fluorescence Depolarization
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Electronic excitations in molecules can acquire nonlinearity in their transport as a result of strong interactions
with vibrations, and stochasticity as a result of thermal fluctuations. The interplay of the nonlinearity and the
stochasticity has the potential of producing dramatic effects in the behaviour of the excitations. Such effects,
which involve thermally induced limit cycles and Hopf bifurcations, are presented in the specific context of
fluorescence depolarization on the basis of a recent generalization of the discrete nonlinear Schroedinger equation.

1. Introduction

Many fields of chemical physics have been enriched by the
work of Raoul Kopelman through the years: energy transfer,
photosynthesis, excitation transport, and chemical kinetics, to
name a few. One recalls the naphthalene “butterflies” in his
slides of the 1970s through which he described his simulation
studies of exciton percolation in molecular aggregates, his analysis
of annihilation phenomena with powers far more exotic than 2,
and his investigation of fractals in reaction dynamics. He has

always been a valuable ally for the present author, not only in
the initial battles to get generalized master equations accepted
in the exciton transport community but also in attempts to survive
against the onslaught of those who would pronounce “ex-CITE-
on” without giving the quasiparticle its special due. It is a pleasure
to dedicate this article to Raoul on his 60th birthday.

The article describes new predictions about fluorescence
depolarization in molecular systems. The predictions arise from
a nonlinear theory of the process when dissipation and thermal
fluctuations are incorporated in the evolution of Frenkel excita-
tions. In section 2, an evolution equation is introduced, which
is a generalization of the so-called discrete nonlinear Schroedinger
equation and which is capable of describing novel thermal effects
including limit cycles and bifurcations. In section 3, the effects
are described in relation to fluorescence depolarization. Con-
cluding remarks are presented in section 4.

We begin with the questions: What is fluorescence depolar-
ization? What is the discrete nonlinear Schroedinger equation?
Why and how would one apply the equation to fluorescence
depolarization? We deal with the first of the questions in the rest
of this section.

Fluorescence depolarization is a tool useful in the study of
excitation transport in molecular systems, the simplest prototype
of the systems being a variable-distance noninteracting donor-
acceptor pair of molecules.1-5 A practical example is provided
by the so-called “stick-dimers” in which poly-L-proline oligomers
of controllable length are used to separate an  -naphthyl group
at the carboxyl end—the donor—from the dansyl group at the
imino end—the acceptor. The observational technique is to study
the efficiency of energy transfer through measurements of
fluorescence excitation, emission, and polarization spectra.
Suppose, for simplicity, that the donor and the acceptor are
identical molecules. On illumination, either of the molecules in
the pair may undergo electronic excitation. The direction of the
induced dipole moment produced on the molecule through the
process of excitation depends on geometrical factors and is
generally different for the two molecules in the pair. For
simplicity, let us assume the two dipole moments to be mutually
perpendicular. One could, in principle, create an excitation of
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the dimer which is localized on one of the two molecules by shining
(broad-band) light polarized in the direction of the dipole moment
on that molecule. Varying the angle of the polarization of the
incident light beam would result in varying the relative amplitude
or probability of excitation of either molecule. If /| and I± are
the intensities of fluorescence polarized respectively parallel and
perpendicular to the direction of the polarization of the incident
light, the degree of fluorescence polarization /, defined as

/= (/„-7_l)/(/,| + /x) (1.1)

is a convenient experimental observable for the investigation of
excitation transfer within the dimer. A detailed presentation of
the basic formalism required for the analysis of this observable
has been given by Rahman et al.2 It is clear that the intensity
of fluorescence in the direction of the unit vector ex is given by

h = ]£Pm„(/Vex)Wex) (1 ·2)
m,n

where the p's are the dipole moments, p’s are density matrix
elements, and m, n represent states in a suitable basis, such as
that of the localized molecular (site) states 1 and 2. Given the
assumption of mutually perpendicular dipole moments that we
have made for simplicity, it follows that

px-ej
= p2*e± = cos  ; -P\'VL —

p2"e|
= sin   (1.3)

where   is the angle made by the polarization of the incident light
with the induced dipole moment on molecule 1. Equation 1.1
then yields

/ = p cos 2  + r sin 2  (1.4)

for/, the primary observable of this investigation, in terms of the
combinations p and r of the density matrix elements in the site
representation:

P ~ Pn~ P22"’ r =
P12 02h 9 = KPu ~

P21) 0-5)

We have also defined the additional quantity q in (1.5) for later
use. As in our previous papers on this subject, the notation used
above describes the degree of fluorescence of polarization by /
rather than p and reserves the latter symbol for the probability
difference, in keeping with standard usage in density matrix
treatments.

The behavior of the degree of fluorescence polarization / thus
depends on the time evolution of p and r. Over the years, such
evolution has been treated through a multitude of theoretical
approaches. In fluorescence depolarization studies, stochastic
Liouville equations were used in the original treatment of Rahman
et al.,2 and the discrete nonlinear Schroedinger equation was
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used in a later nonlinear treatment.3·4 In the resent past, the
discrete nonlinear Schroedinger equation has been generalized
to produce a new evolution equation7·8 which can describe, in a

reasonably unified manner, nonlinear effects arising from strong
interactions of the excitation with vibrations, dissipation effects
originating in bath interactions, and bifurcation effects stemming
from thermal fluctuations. The origin, meaning, and form of the
new equation are described in the following section in the
fluorescence depolarization context.

2. Evolution Equation
The evolution of the amplitudes cm of occupation of Wannier-

like localized sites m by a Frenkel excitation generally obeys the
standard Schroedinger equation

dcm
ih— -  «  + £» . (2·1)

<“ n

where the E’s and the Vs are respectively the diagonal and off-
diagonal matrix elements of the Hamiltonian in the localized
basis. If interactions with vibrations are present, the Vs and E's
are dependent on the vibrational coordinates x. For simplicity,
let us take Vm to be independent of x, and Em to depend linearly
only on the internal coordinate xm at site m. In the absence of
interactions, xm might evolve sinusoidally with frequency   and
equilibrium position 0. In the presence of interactions, however,
the equilibrium position of the oscillator is changed by an amount
proportional to the probability that site m is occupied by the
quasiparticle. Furthermore, dissipation effects acting on the
vibrations as well as the corresponding thermal fluctuation effects
would be represented by

^7 + 7%= + <v2*m
= -const.|cm|2 + RJt) (2.2)

where bath interactions give rise to the damping parameter  ,
and fluctuations are described by the random force term R„(t).
For simplicity, we will assume that the damping parameter is
large enough to justify the neglect of the second derivative of the
oscillator displacements. Then, if u -* “, y -*· “, and  2/  =

 , the evolution of the oscillator displacements toward their
equilibrium positions proceeds at a single characteristic “vibra-
tional relaxation” rate  . For fluorescence depolarization of
dimers, we need restrict the analysis only to a two-site system.
Then, with y denoting the difference *i - x% except for
proportionality constants, we can write the evolution of the density
matrix elements p, q, r defined in (1.5) as

%
= 2Vq·, g--2Vp-xyr, jt = xyq (2.3a)

& = -T(y-p) + F(t)·, F(t) = 2T(kT/w2m) (2.3b)

where k is the Boltzmann constant and T the temperature.
Equations 2.3 constitute a Langevin set. Standard techniques
allow the derivation9 of an exact Fokker-Planck equation for the
distribution function in p,q,r,y space, an approximate but useful
Fokker-Planck equation for the distribution function in p, q, r

space, and a closed evolution equation for the thermal averages
of p, q, r obtained through a contraction analysis.7 The latter
equation is

42 = 2 Vq (2.4a)

^2 =-2 Vp-xpr + ^jZqr-aq (2.4b)

j- = xpq- ^ q2 ~   - r*,) (2.4c)

where the symbols p, q, r now represent averages over a thermal
ensemble of the vibrations, = tanh(F/fc7) is the thermal
equilibrium value of r, and a is a rate which attempts to drive
the system to the thermal state. A high-temperature expression7
for this rate is a = (2x/T)kT.

Equation 2.4 will form the point of departure for the analysis
in this paper. It describes the combined phenomena of transfer,
nonlinearity, dissipation, and thermal fluctuation and is a special
(two-site) case of the general evolution equation8

ih —

2C(Pmm
~

PnnlPmn
~

ZpPmn([^'’Z7]mm
—

-Kn^Pmn-Pmn"1) (2-5)

We draw the reader’s attention to the physical significance of the
various terms on the right-hand side of (2.5). The first term
describes the transfer of the electronic excitation. Along with
the last term, which describes thermal and dephasing effects, it
goes to make the ordinary stochastic Liouville equation10 used
in an augmented form in the fluorescence depolarization analysis
of ref 2. The nonlinearities that can arise from strong interactions
of the moving excitation with vibrations are represented by the
second and third terms in (2.5). Equation 2.5 with just the first
two terms on the right-hand side is nothing other than the discrete
nonlinear Schroedinger equation4 or its formal equivalent, the
discrete self-trapping equation,11 *written in von Neumann
notation. It has formed the basis of the fluorescence depolarization
investigation of ref 3. The finiteness of vibrational relaxation is
responsible for the third term on the right-hand side of (2.5), as
shown in ref 12. The simple form of (2.5), or of its dimer
counterpart (2.4), is convenient in that the various terms discussed
above appear in an additive manner. Needless to say, such
simplicity is dependent on the use of judicious approximations.
The limitations of the approximation scheme are discussed in
refs 7 and 8. Space constraints prevent us from elaborating further
on these and related matters. We state in passing that (2.5) or

(2.4) can indeed be taken to apply to the standard Hamiltonian
used in countless earlier13 investigations of similar systems:

h= ^>*+  ">* " *+  (* +v2) +
m m,n q

* ' 2 »<·>& eXP('9-Rm)(6, + b-J)amam (2·6)

Excepting (2.1) and (2.6), all the equations in this paper have
been written down with ft set equal to 1. Equation 2.6 uses
standard notation which we will not detail here, except for stating
that a and b refer respectively to the moving excitation and the
vibrations with which it interacts strongly, that the Vs denote
intermolecular transfer, and that the sum of gq2a>q over all modes
q essentially provides the nonlinearity parameter   appearing in
(2.4) or (2.5).

3. Fluorescence Depolarization
We will now investigate the quantity / as given by (1.4) by

substituting in it the solution of p and r from (2.4) for various
cases. Throughout the analysis in this paper, except in eqs 3.2
and 3.4, the lifetime of the excitation has been assumed to be
infinite.

Case 1. Linear Undamped Dimer. If the interactions with
both the vibrations and the damping bath are negligible, one has
  = 0 and a = 0 in (2.4). The molecular system is thus a linear
undamped dimer. One obtains

f{t) = sin2 2  + (cos2 2 ) cos 2Vt (3.1)
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The quantity f oscillates from the initial value 1 at frequency 2V
around the value sin2 2 . This latter value depends on the
inclination of the plane of polarization of the incident light to the
dipole moment on molecule 1. If the excitation decays with
lifetime r, the steady-state fluorescence polarization f, =

(1/ )   {)*~,,  di is given by

/,= cos2 2 
1 + 4 V2r2

+ sin2 2   (3.2)

These are standard and expected results.
Case 2. Linear Dimer in Stochastic Interaction with Bath. If

interactions with vibrations continue to be not strong enough to
introduce nonlinearities into the evolution, but if a bath interaction
introduces damping, specifically if   = 0 but a f* 0, one gets
from (2.4)

fit) = (cos2 20)e~°"/2[cos    + (a/2 ) sin   ] +

(sin 20){req + [sin 2  - (3.3)

where   = [4F2- (a/2)2].1/3 If this quantity, which arises from
a combination of the transfer interaction and the damping
interaction, is real (imaginary), the evolution of/is underdamped
(overdamped). The degree of fluorescence polarization evolves
from an initial value of 1 to the quantity (sin 20) «, = (sin 20)
tanhIV/kT) which depends on the polarization angle 0. Thus,
if the incident light has its plane of polarization parallel to the
induced dipole moment on one of the molecules (and perpendicular
to that on the other molecule), the degree of fluorescence
polarization/ vanishes at large times. For other inclinations of
the incident polarization plane,/does not vanish at long times.
The steady-state /is given by

fs =
4 cos2(20)(l + ar)

(2 + ar)2 + (16F2 - a2)r2
‘

1 + ar
+ S-*nf2<ft)(sin(20) + «·" «,)

(3.4)

These results agree with the analysis of ref 2. The effect of the
relative magnitudes of the transfer interaction and the damping
rate are clear in (3.3) and (3.4).

Case 3. Nonlinear Dimer in the Adiabatic Limit (Infinitely
Fast Relaxation) at T = 0. If the interactions with vibrations
are strong enough, behavior inaccessible to the linear treatments
of refs 2, 5, and 6 is predicted by the present theory. One now
has   0. Let bath interactions be absent, i.e., a - 0, and let
vibrational relaxation be infinitely fast, i.e.,   -»  ». We then
have

fit) = (cos2 20)cn(«í|ff) +

(sin 20)[sin 20 - a(cos2 20) «2(« | )] (3.5a)

u = 2   cos 20;   = £ /4 ;
| = (cos 20)[1 + lx/2V) sin 20]'1/2 (3.5b)

The Jacobian elliptic functions cn and sn present in the evolution
of/describe a number of interesting physical features in this case

including the occurrence of abrupt transitions (e.g., the cn-án
transition4). The crucial parameter which controls these transi-
tions is a. It is determined not only by the relative ratio of the
nonlinearity and the transfer interaction but also by the polariza-
tion angle. This is an important feature which should not be
missed. It suggests the possibility of experimental control over
the effective nonlinearity of the system through a mere variation
of the inclination of the polarization of incident light. Unfor-
tunately, a fixed inclination has little meaning in a disordered
aggregate or solution, and finding an experimentally appropriate
crystal is not an easy task. Nevertheless, it is useful to stress that

Figure 1. Effect of finite vibrational relaxation on fit), the degree of
fluorescence depolarization. Plotted is/asa function of the dimensionless
time 2 Vt for two values of the vibrational relaxation rate  : (a) 1 and
(b) 10 in units of 2 V. The effective dissipation is clearly more pronounced
in (a). The other parameters are   = 9°, x/2V - 2, and a   0. This
choice signifies a nonlinear system at zero temperature with a degree of
nonlinearity high enough to cause symmetry breaking. The lifetime of
the excitation has been assumed infinite in all the plots of this paper.

the experimental technique of fluorescence depolarization can

modify a sensitive parameter in the observations without changing
the system property  .

Case 4. The General Case: Finite Nonlinearity, Relaxation
Rate, and Temperature. We will now consider the general case

  0, a f* 0, 1/  f* 0 from which all the above results may
be derived under special conditions. New results pertain to
additional subcases, e.g.,   f* 0, a f* 0,1/  = 0, signifying the
adiabatic nonlinear system in the presence of bath interactions,
and   f* 0, a = 0,1/  f* 0, signifying the zero-temperature (no
bath interactions) case of the nonadiabatic system. Equation 2.4
must be solved numerically in the general case. Figures 1-3
show the solution numerically. Only the time dependence of /
is shown. In units of 2V, the nonlinear parameter   = 2 in all
the plots. Because the range of validity of the high-temperature
expression   = (2 / )   is not known with precision, we have
treated a as an independent parameter here. We have set the
equilibrium value of r to be 1, for simplicity.

Comparison of the time dependence of the degree of fluores-
cence polarization in case 1 (eqs 3.1 and 3.2) and case 2 (eqs 3.3
and 3.4) reveals their prime difference to be persistent oscillations
in the former case and their damping to the value (sin 20)r«, =

(sin 20) t&nhlV/kT) in the latter case. This has already been
clear from the analysis of Rahman et al.2 We see here a similar
relation between the adiabatic results of Kenkre and Tsironis3
and the present analysis. Figure 1 shows the appearance of an
effective damping of the nonlinear oscillations. In units of 2K,
we have taken the relaxation rate   to be I in Figure la but 10
in Figure lb and have set the polarization angle   =  /20 and
the fluctuation rate a = 0. The effective damping in the present
analysis relative to that of ref 3 arises from the flniteness of
vibrational relaxation. This subtle point has been explained in
the context of the general evolution by Kenkre and Wu.10 Briefly
stated, finiteness of vibrational relaxation appears as dissipation
in the evolution of the fictitious classical oscillator whose
displacement represents the probability difference p of the
quantum mechanical excitation and forces the system into the
stationary states of the adiabatic system. The effective damping
is much more transparent in Figure la than in Figure lb.

An even more remarkable feature that arises from (2.4) consists
of limit cycles into which the system settles provided the thermal
fluctuations are small enough. These limit cycles manifest
themselves as oscillations of the degree of fluorescence polariza-
tion. They represent an unusual steady state of the system.
Normal oscillations of fit), such as in cases 1 and 2 above, decay
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Figure 2. Bifurcation effects in ff) arising from thermal fluctuations.
Plotted is/as a function of the dimensionless time 2 Vt for two values (in
units of 2 V) of the thermal fluctuation rate a: (a) 0 which signifies zero

temperature and (b) 0.01. Other parameters are   = 0°, x/2V = 2, and
T/2V = 1. Dramatic bursts of J[t) occur in (b).

at large times in any real system as a result of dissipation. This
is quite clear from (3.3). Nonlinear oscillations arising in case
3 also decay for similar reasons for 1/  ^ 0, a = 0, as is apparent
in Figure 1. By contrast, the interplay of nonlinearity (  0)
with stochasticity (  ^ 0) gives rise to nondecaying oscillations.
For appropriate parameter values, the degree of fluorescence
polarization can exhibit complex behavior consisting of initial
oscillations, tendency to settle into a value corresponding to the
stationary states of the system, and evolution into an apparently
uninteresting state without oscillations, as well as the highly
counterintuitive limit cycles. In Figure 2 we compare the evolution
of / for no thermal fluctuations (a = 0) with that for finite
fluctuations (a = 0.01). We have taken   = 0,   = 2, and   =

1 in these and all the subsequent plots in the paper. The curious
bursts of the degree of fluorescence polarization in Figure 2b
arise from Hopf bifurcations.14 For large times, the bursts bunch
into limit cycles. The bunching tendency is clear on the right
side of Figure 2b. In Figure 3, we have shown the evolution for
the entire range of thermal fluctuations. The presence of
nonlinearity in excess of the critical value (  > 2V) ensures the
formation of symmetry-breaking stationary states. The fact that
vibrational relaxation is finite forces the evolution to values of
/ corresponding to those stationary states, as is clear in Figure
3a. As soon as temperature is finite (a is finite), we see in Figure
3b (a = 0.01) that the system is forced out of those stationary
states by thermal fluctuations. As a is increased, bifurcation
behavior depicted in Figure 1 b occurs. In Figure 3c, one sees the
clear onset of limit cycles ( = 1). It should not be forgotten that
the limit cycles are present in spite of dissipation. Indeed, they
arise from a balance of nonlinearity and dissipation. For a large
enough value of a, the cycles are destroyed as is obvious in Figure
3d (a = 4). The condition for the destruction of the cycles is14

a > (x/IX, (3.6)

If the high-temperature expression9 for the fluctuation rate is
used in conjunction with (3.6), we obtain the simple condition for

Figure 3. Limit cycles in/(z) arising from thermal fluctuations. Plotted
is/as a function of the dimensionless time 2 Vt for several values (in units
of 2 V) of the thermal fluctuation rate a: (a) 0 which shows straightforward
evolution toward the stationary state, (b) 0.01 which shows the removal
of the excitation from the stationary state as a result of thermal
fluctuations, (c) 1 which exhibits limit cycles which do not ever decay,
being maintained by a balance of nonlinearity and dissipation, and (d)
4 in which the limit cycles are destroyed. Other parameters are   = 0°,
x/2V = 2, and T/2V = 1. The system is in the strongly nonlinear regime.

the destruction of limit cycles in fluorescence depolarization to
be

^>tanh(-£) (3.7)

the critical temperature being thus 0.8336(F/fc). Although this
number is independent of the nonlinearity parameter  , the
phenomenon of limit cycles is itself absent unless   exceeds the
critical value 2V. At the present stage of the analysis, the range
of applicability of the a expression used to get (3.7) from (3.6)
is unclear. However, if (3.7) is assumed to be valid, we see that
systems with high excitation-vibration coupling (and consequently
high degree of nonlinearity) could indeed exhibit the effects we
have predicted to a measurable extent. Given typical values for
the Davydov splitting in stick dimers, the temperatures under
which the curious phenomenon of limit cycles might be observable
could be of the order of a few tens of degress kelvin. Under the
assumption that the simple expression for the fluctuation rate
which allows one to deduce (3.7) from (3.6) is valid, it is also
possible to use a result derived by KuS14 and obtain

t>“Hr?)+f V1+2K“hfcff) (3-8)

as the condition for the time evolution off{t) to be monotonic for
large times.

4. Concluding Remarks

The observable we have investigated in this paper is the degree
of fluorescence polarization. Originally discussed by Knox in
the application of excitation transfer theory to dimers, it was
treated by him and his collaborators with the help of the stochastic
Liouville equation in refs 2 and 6 and by others with the help of
the discrete nonlinear Schroedinger equation in refs 3 and 4.
Coherence and initial state preparation effects were among the
targets of the former studies, and nonlinear effects were the goal
of the latter studies. Recent work by Wynne and Hochstrasser5
has caused renewed interest in this field. In the present paper
we have predicted entirely new effects, particularly limit cycles.
Although space constraints have not permitted us to describe
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2V1

Figure 4. Effect of changing the inclination of the initial polarization.
Plotted is/as a function of the dimensionless time 2Vt for ajlV = 1,

\/2V = 2, and V/2V = 1. The polarization angle   equals 6° in (a) and
36° in (b).

them in detail, the figures we have provided from our numerical
analysis should make the primary message clear. Thus, Figure
2 shows how increasing the temperature of the system might
result in the experimental observation of the remarkable (a) -» 

(b) transition related to bifurcations, Figure 3 shows how
increasing the temperature might result first in the observation
of the limit cycles in (c) and then their destruction in (d), and
Figure 4 shows how the structure in the observed time dependence
of f could be made to change by varying the angle of polarization.
For general aspects of the Hopf bifurcations of interest to this
study we refer the reader to ref 14. Elucidation of further details
in the fluorescence depolarization context, in particular the
description of the steady-state quantity/, and its angle average,
which are generally of greater experimental relevance than the
time-resolved /, will be provided in a forthcoming publication.

The observable/is accessible experimentally in its time-resolved
form fit) or in its steady-state version /,. Experiments to measure
the steady-state quantity are easier to perform than their time-
resolved counterparts. However, we have not provided the details
offs here except in eqs 3.2 and 3.4 for cases 1 and 2, respectively,
of section 3. A similar equation can be written down analytically
in terms of an infinite expansion of the Jacobian elliptic functions
appearing in (3.5) for case 3. For the general case 4, however,
f, must be supplied numerically. The analysis provied in the
present paper has, as its aim, the description of the qualitative
features of the new predicted effects. To make the predictions
quantitative, it is important to take averages of the calculated
observables over polarization angles. This is imperative in
solutions where the dimer molecules constantly change their dipole
moment angles with respect to a laboratory axis as a result of
rotations. Angle averages would be unnecessary for the analysis
of pure crystals. While the theory in refs 2,3,5, and 6 addresses
two-site systems, a simple treatment for extended crystals has
been given by the author in ref 4.

It might be useful to observe that, in contrast to the early
attention given2·3 to the quantity/defined in (1.1), recent work
in the chemical physics literature has focused on the degree of
anisotropy (/j - /x)(/j + 2/x)_1. Since the latter quantity is
obtained from / as 2fi2 -,/)-1, it is straightforward to examine
its evolution with the help of the discussion presented in this
paper.

Variables in the fluorescence depolarization experiment which
may be “dialed” to span the various effects considered are four:
(i) the length L of the stick dimer, (ii) the temperature T of the
system, (iii) the angle   of the polarization of the excitation
polarization, and (iv) possibly the angle between the induced
dipole directions of the optically active molecules. Preparing the
dimers with a variable number of optically inactive molecules
separating the active ends would vary L and thereby the transfer
interaction V. The effect could be substantial: this variation has
as its consequence a change in the nonlinearity ratio x/2Kwhich
is crucial to the onset of symmetry breaking in the system
considered. Changes in the dial variable (ii), viz., the temperature
T, would have two kinds of effects: a normal change in the
relaxation rate and the striking consequences described above—
bifurcations, the onset of limit cycles, and their destruction.
Physically changing the direction of the exciting polarization
would change  . This change not only affects initial conditions
as is known from the linear analysis2 but also has substantial
consequences in the nonlinear system as is clear from case 3
discussed in section 2 (see also Figure 4). This dial variable (iii)
is, however, useless in solutions and disordered molecular
aggregates where no unique   exists. We have discussed in this
paper only the case of mutually orthogonal dipole moments on
the two molecules constituting the stick dimer. Our final dial
variable (iv) corresponds to changes in the angle between the
dipole moments which could possibly be brought about by
geometrical selection, i.e., by making the constituents of the
optically active molecular pair nonidentical or differently oriented.

The basis of the present study has been the nonlinear equation
(2.5). Similar equations, typified by the discrete nonlinear
Schroedinger equation, have existed for some time in the literature
but were introduced only recently to the analysis of phenomena
in molecular crystals and aggregates. The context of Davydov
solitons15·16 has stimulated interest in these equations. The discrete
nonlinear Schroedinger equation4 along with its formal equivalent,
the discrete self-trapping equation put forward earlier by Eilbeck
et al.,15 has been applied to a variety of experiments. (See refs
4 and 8 for a partial overview.) The basic evolution instrument
used in the present paper is an extension7·8 of those nonlinear
equations in the form of (2.5) capable of treating a blend of
nonlinearity, dissipation, and thermal fluctuation.
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