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Abstract. A nonlinear stochastic Liouville equation pos- 
tulated phenomenologically and used recently for the de- 
scription of the interplay of damping and nonlinearity is 
shown to arise in a natural manner as an approximate 
consequence of a set of Langevin equations introduced 
for the analysis of the Brownian motion of a nonlinear 
quantum dimer. The validity of the phenomenological 
equation is discussed in the light of the approximate 
derivation. A more physical transport equation for the 
system density matrix is obtained and shown, on the one 
hand to reduce to the phenomenological equation in an 
appropriate high temperature limit, and on the other to 
predict novel behavior. Tbe new nonlinear stochastic Li- 
ouville equation we present is capable of unifying the 
description of the nonlinear transport of quasiparticles in 
several different parameter regimes and we suggest that it 
should be regarded and used in the same role in the study 
of the physics of nonlinear transport phenomena that the 
linear stochastic Liouville equation does in fields such as 
(linear) exciton dynamics in molecular crystals and ag- 
gregates. 

1. Introduction 

Recently, a discrete nonlinear stochastic Liouville equa- 
tion (SLE) was introduced for the study of the interplay 
of damping and nonlinearity and investigated for its ef- 
fects on neutron scattering and time evolution on the 
one hand and its Painlev6 properties on the other [1]. 
The equation was formulated by adding dephasing terms 
to the discrete nonlinear von Neumann equation [2]. 
The dephasing terms were taken to destroy off-diagonal 
terms of the density matrix p (in the representation of 
site states m, n, etc.) at a constant rate ~ in the standard 
manner [3-7] as explained by Reineker 1-3] and others. 
The resulting nonlinear adiabatic stochastic Liouville 
equation had the form 

* On leave of absence from the University of Pisa, Italy 

idpm~/dt = [-V, P]m,-  Z(Pmm--P,,) Pro,--iC~(1 --6m,)p,,, (1) 

which, for the dimer (two-site system in which m, n take 
on values 1 and 2 only) studied in 1,1] reduced to 

dp/d t = 2 Vq (2 a) 

dq/dt= - 2 V p -  zpr-c~q (2b) 

d r / d t - = z p q - ~ r  (2c) 

where the real quantities p, q, r are obtained from the 
density matrix elements through 

P=Pla--P22; q=i(P12--P21); r=(Plz+P21). (3) 

The evolution predicted by (2) is seen [1] to exhibit the 
nonlinear elliptic function oscillations characteristic of 
the nonlinear adiabatic dimer 1,8] at short times but to 
tend to equal population on the two sites at long times 
as a consequence of the dephasing introduced by e. A 
considerably more satisfactory description of damping 
was given more recently by Kenkre and Wu [-9] simply 
by relaxing the adiabatic approximation, i.e., by refrain- 
ing from making the assumption that vibrational relaxa- 
tion, which leads to the nonlinearities in the discrete 
nonlinear Schr6dinger equation, is infinitely fast. No ad 
hoc terms such as - ~ q and - e r in (2) were introduced. 
Among the physical results obtained for this nonadiabat- 
ic evolution was the long-time settling of the system into 
the stationary states of the adiabatic dimer. Questions 
that remain unanswered are: is there a relation between 
the adiabatic SLE used in 1,1] and the results of the 
nonadiabatic analysis of [-91 ? Is it possible to derive or 
justify the adiabatic SLE (which was introduced merely 
phenomenologically in 1,1]) from a more acceptable 
starting point? And what is the extent of its validity 
and applicability? This paper consists of answers we 
have found to these questions from a theory developed 
recently [10] for the description of the Brownian motion 
of the nonlinear dimer. A useful and important bypro- 
duct of our attempts to answer the questions is a new 
nonlinear stochastic Liouville equation which is much 
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more physical than the adiabatic SLE but reduces to 
it in an appropriate limit. We present and discuss the 
new SLE and compare its predictions with those of its 
adiabatic counterpart. 

The system we describe is, as said above, a quasiparti- 
cle moving between two sites 1 and 2. Its respective am- 
plitudes are c~ and c2, and its intersite transfer interac~ 
tion is V The nonlinearities in its evolution arise from 
its coupling with oscillators at the two sites with dis- 
placements x~ and x2, and frequency co. The interaction 
with the quasiparticle shifts the equilibrium position of 
each oscillator from zero by an amount proportional 
to the probability of occupation of the respective site 
by the quasiparticle, and the oscillator motion is 
damped. The system is treated in the limit that the damp- 
ing rate and the oscillator frequency are large enough 
so that one need consider only a single relaxation time 
1/F which is proportional to the ratio of the damping 
rate to the square of the frequency. Specifically, the start- 
ing point [9] in the absence of further dephasing or sto- 
chastic interactions would be 

idc l /d t  = V c  2 -1"- Exx cl 

idc2/dt= Vcl + E x  2 C2 

dx l /d t  + F Xl = -(xF/E)Icl[  2 

dxz/d t + F x  2 = - (zF/E)]C2l 2 

(4a) 

(4b) 

(4c) 

(4d) 

Z being a measure of the nonlinearity, and E an interac- 
tion constant. In the present investigation we are inter- 
ested in finding out whether the origin of (2) with appro- 
priate modifications, if necessary, can be understood 
from (4) when stochastic forces arising from interactions 
with a bath are added to the system. The idea is to 
obtain, if possible, a transport equation similar to that 
obtained [3-7] earlier for exciton dynamics but capable 
of addressing nonlinear transport. The required tools are 
provided by a recent formalism constructed by Grigolini 
et al. [10]. On adding stochastic forces F1, and F2 which 
are Gaussian white noises given specifically by 

(Fro(O) F,.(t)) = 2 r  ( x~ )oq  6(t)=2r(kB T/co 2) 6(t) (5) 

to the right hand sides of (4c) and (4d) above, one finds 
in [10] the following Fokker-Planek equation in the limit 
of large relaxation (F much larger than all other rates 
such as )~ and V): 

8a(p, q, r; t)/Ot =Lre d o-(p, q, r; t) (6a) 

L~ d = Lq + (2 V/F)(Z q) [q (O/O r)-- r (~/e q)] 
+ (2)~ kB T/F) [(~2/~ q2) r 2 _ (0/0 q) r (~/8 r) q 
- (~/0 r) q (~/~ q) r + q2 (~2/~ r2)] (6 b) 

Here a(p, q, r; t) is the reduced distribution function 
which describes the evolution of the quasiparticle alone 
(obtained by eliminating the oscillator variables), L~d 
is the corresponding reduced Fokker-Planck operator, 
T is the temperature and kB the Boltzmann constant. 
Of the terms in the operator L~ea, Lq which is given 
by 

Lq= 2 V[p(~/Oq)-q(c~/Op)] + zp[r(O/~q)-q(~/Or)] (7) 

refers to the adiabatic evolution of the quasiparticle while 
the other parts describe the effects of the nonadiabaticity. 

2. The new nonadiabatie nonlinear stochastic Liouville 
equation 

In [10], Eq. (6) have been used to obtain further reduced 
Fokker-Planck equations and to calculate escape rates 
through a generalized Kramer's analysis. In the present 
paper, our interest is in obtaining evolution equations 
for the average quantities (p}, (q} and (r}. On multiply- 
ing (6a) by p, q, and r respectively and carrying out 
an integration over those variables, we find, as an exact 
consequence of (6), the following set of coupled equa- 
tions: 

d ( p ) / d t = 2  V ( q )  (8a) 

d ( q ) / d t =  - 2  V ( p ) - z ( p r )  +(2 V U r ) ( q r ) - a ( q )  (Sb) 

d ( r ) /d  t = )~ (p q ) - (2 Vx/F) (q2)  _ ~ ( r )  (8 c) 

where the "dephasing" rate e is given by 

c~ = (2 / r ) (E/co)  2 (kB T) = (2 z/F)(kB T). (9) 

The second equality in (9) is obtained by realizing that 
(4 c) is the high-damping limit of 

d 2 x1/dt  2 +(co2/F)(dxl/dt)+ 022 xl = - E l C l l  2 (4c') 

(similarly for (4d)), and that therefore (E/co)2 =Z holds. 
Equations (8) constitute one of the new results of the 

present analysis. In order to derive a result which is 
both more useful and more easily comparable to (2) 
above, it is necessary to evaluate the quantities (qr) ,  
( p r )  and ( p q )  in (8). A simple factorization approxima- 
tion such as ( p r ) ~ ( p ) ( r )  is too crude and leads to 
unphyiscal results. We employ, instead, the following ap- 
proximation: 

(pa qb rC)t ~ (P)t  (q)t  b (r)~ 
+ [(p,  qb r c) _ (p)a (q}b ( r )e ]eq  (10) 

where a, b, c are appropriate numbers (1 or 2 for our 
use here) and the symbols t and eq denote, respectively, 
the values at time t and in equilibrium respectively. The 
equilibrium solution aeq of (6) is straightforward to ob- 
tain: 

aeq(p, q, r)=Nc exp{--(V/kB T ) [ r - ( z / 4 V ) p 2 ] } .  (11) 

N~ being a normalization constant. The substitution of 
(10) in (8) and the use of (11) for the evaluation of the 
equilibrium averages with the help of (11) reduces (8) 
to 

dp/dt = 2 Vq (12a)  

dq/dt  = - 2  V p -  z p r  + (2 Vz/F) q r -  ~q (12b) 

d r/d t = Z P q - (2 Vz/F) q2 _ c~ Jr-- roq] (12 c) 

where we have used the notation p, q, r, to denote (p),  
(q),  ( r )  respectively in order to make comparison with 
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(2) easier. The term r~q in (12c) appears as a natural 
consequence of the calculation. Two remarks appear to 
be appropriate at this stage. The first is that (11) which 
describes the steady state solution of the Fokker-Planck 
equation (6), (7), can be obtained through the contraction 
of the steady state solution of the full Fokker-Planck 
equation (see, e.g. (2.6)-(2.9) of [10]) for the complete 
distribution p (p, q, r, z) which includes z, an appropriate- 
ly normalized difference of the oscillator displacements 
xl and x2. This more complete solution, which we have 
not presented earlier, is 

p (p, q, r, z) = constant, exp { - (V/kB T) 
. Jr-- (Z/4 V) p2-1}, exp { -- (7~ z2/2 kB T)} 

and the process of contraction consists of an integration 
over z. The second remark is that the quantity VEt 
- (Z /4  V)p2] whose canonical distribution is described 
by (11), and which, except for additive constants, is the 
energy-like slow variable chosen in [-101 and [,11], is 
nothing other than the energy of a dipole interacting 
with a magnetic field whose transverse component de- 
pends on the dipole moment. This magnetic analogy has 
interesting consequences which we will discuss elswhere. 

The nonlinear stochastic Liouville equation (12) is the 
central result of this paper. Although it suffers from the 
limitations of the factorization approximation (10) made 
to derive it from (8), it has considerable physical content. 
It reduces to several cases studied earlier in appropriate 
limits. If there is no coupling of the quasiparticle with 
the oscillators, all terms on the right side of (12c) and 
all but the first term on the right side of (12b) vanish, 
and the linear dimer is recovered. If the vibrational relax- 
ation rate is infinitely large, the two last terms on the 
right side of (12b) as well of (12c) vanish, and the nonlin- 
ear adiabatic dimer [-8] is recovered. If the temperature 
Tis taken to be zero, ~ in (9) disappears, the last terms 
in (12b) and (12c), which describe pure decay (dephas- 
ing), vanish, and the nonadiabatic dimer of [-9] is recov- 
ered. Finally, if z/F is small but kB T/F is not small, 
the nonadiabatic terms in (12b) and (12c), viz. (2 Vz/F) qr 
and (2V)(F)q2 respectively, vanish, and one recovers, 
except for the term req in (12c), (2) above, i.e. the nonlin- 
ear adiabatic stochastic Liouville equation of [1], whose 
range of validity prompted this investigation. The differ- 
ence regarding req arises from the well known fact that 
the ordinary SLE leads to incorrent thermalization [-5, 
8], and that consequently (8) which is a straightforward 
extension of that SLE, is inappropriate at temperatures 
which are not too large. The term req in (10) disappears 
in the limit of infinite temperature. 

3. Time evolution and comparison with the adiabatic SLE 

The nonlinear SLE we have derived in this paper, viz. 
the set of (12), has striking predictions whose meaning 
can be understood clearly from the physics of the system. 
We display these in Figs. 1-3 below. The comparison 
of the predictions of (12) with those of the earlier SLE 
(2) is made pictorially in Figs. 4, 5. All solutions are 

~ Q  
equilibration between sites 

localized stationary state 

~ __1 J 

0 . 100 ~ EO0 

2Vt 
Fig. 1. Time evolution in the dimer as predicted by the new nonlin- 
ear stochastic Liouville equation presented in this paper: the differ- 
ence p(t) of site occupation probabilities in the nonlinear nonadia- 
batic dimer at finite temperatures is plotted as a function of the 
dimensional time 2Vt, for the condition that a single site is occu- 
pied initially. Two separate processes in the evolution of the quasi- 
particle, viz. the formation of the self-trapped state (equivalently 
the polaron) and its later destruction as a result of thermal fluctua- 
tions, are seen clearly. Arrows mark the different time regimes. 
The localized state value of p is obtained from the expression p2 
= 1- (2V/z)  2 to be found in [2, 8, 10]. Parameter values, in units 
of 2V, are: Z=1.25, F = 3 ,  and ~ = 4 x  10 -3. These represent the 
nonlinearity, vibrational relaxation, and temperature dephasing, re- 
spectively 

obtained numerically from (12) and (2) through a 
straightforward fourth-order-Runge-Kutta algorithm. 
We also assume, for the sake of simplicity, that the tem- 
perature is high enough to justify the neglect of req in 
(12c). 

In all figures, the probability difference between the 
two sites in the dimer, viz. p(t) is plotted as a function 
of time t, in units of 1/2V, for the condition that only 
one of the sites is occupied initially. We see in Fig. 1, 
that the system settles first in one of its localized (self- 
trapped) states when t reaches approximately the value 
10/V. We als0 see that the system subsequently leaves 
this state and equilibrates between the two self-trapped 
states in times of the order of 50/V. The two time regions 
have been marked by arrows in Fig. 1. The first process 
is the formation of the polaron, and has been obtained, 
displayed and discussed in [-9]. The second process is 
the over-barrier hopping discussed in [10]. Both its time 
evolution and its coexistence with the first process (self- 
trapping) seen clearly in Fig. 1, are new features of our 
analysis which, to our knowledge, have not been dis- 
played earlier in the literature. The nonlinear SLE we 
present provides a single transport instrument capable 
of describing in a unified fashion both the formation 
of the nonlinear structure (the polaron) as a result of 
the strong interaction with the vibrations, and its de- 
struction as a result of thermal fluctuations. The nonlin- 
earity ratio z/2V in Fig. 1 has been chosen to be 1.25 
which is intermediate between the "static" and "dynam- 
ic" transition values 1 and 2. The value 1 characterizes 
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Fig. 3. The evolution of p(t) as in Fig. 2, with the same values 
1.25 and 30 (in units of 2V) for the nonlinearity ratio Z and the 
relaxation rate F, respectively, but for a value of the dephasing 
rate e which is intermediate (a/2V= 1.6 x 10 -3) between those in 
Fig. 2a and b. All three phases of the evolution are clear in this 
case: the pre-selftrapping oscillations, the formation of the localized 
state, and its destruction resulting in the equilibration between the 

o two sites 

r 
0 i00 200 300 

2Vt 

Fig. 2a, b. The site occupation probability difference p(t) plotted 
as in Fig. 1 for the same value of nonlinearity (z /2V= 1.25) as in 
Fig. 1 but for a larger relaxation rate (F /2V= 30). The dephasing 
rate e equals 0.4x 10 -3 in a and 6.4x 10 .2 in b (in units of 2V). 
In a, a preliminary stage, in which no self-trapping tendencies are 
seen, is followed first by self-trapping and then by the beginning 
of equilibration between the two sites, i.e. of the destruction of 
the localized state. The higher value of the dephasing rate c~ in 
b, however, hides the formation of the localized state altogether 

",,/ 

E I 

50 
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Fig. 4a, b. Comparison of the predictions of the new nonadiabatic �9 ~ o 
SLE presented in this paper (12) with those of the old adiabatic 
SLE (2). The site occupation probability difference p(t) is plotted 
for the initial condition that a single site is completely occupied. 
Here and in Fig. 5 below, solid lines denote the evolution as de- 
scribed by the new SLE while dashed lines represent the old SLE. 
The relaxation is taken to be fast (F/2V=40) and the dephasing 
rate e is 6.4x 10 -3 in units of 2V. a and b differ in the value 
of the nonlinearity: z/2V equals 2.1 in a but 4 in b. Not much "~ 
qualitative difference exists between the old SLE and the new SLE 
in this case 
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Fig. 5a, b. Comparison of the two SLE's as in Fig. 4 in another 
parameter regime. The relaxation rate F is 20 in units of 2V, and 
the dephasing rate e is 4 x i0 4. Both are slower than in Fig. 4. 
The nonlinearity ratio z/2V equals 1 in a, in which nothing more 
interesting than damping in the two SLE's is seen: the damping 
is faster as predicted by the new SLE because of the existence 
of an additional channel for the removal of the energy of the quasi- 
particle. In b, however, z/2V equals 1.25 and a sharp difference 
emerges in the predictions of the two SLE's: the new SLE drives 
the evolution towards the stationary state while the old SLE merely 
exhibits damped oscillations 

the onset of self-trapped states, and the value 2 is the 
minimum value required to trap an initially fully local- 
ized quasiparticle (see [8] for a complete discussion). 
The relaxation rate F in Fig. 1, in units of 2V, is 3. 
The relaxation is thus neither too fast nor too slow. The 
value of the fluctuation (dephasing) rate c~, in units of 

�9 2V, is 4x  1 0  . 3  . 

The same value of the nonlinearity is used in Fig. 2 
as in Fig. 1. However, the relaxation rate F is taken to 
be 10 times larger: F /2V=30.  The dephasing rate c~ is 
taken to be (2V) times 0.4 x 10 .3 in Fig. 2a but 16 times 
larger in Fig. 2b. Interesting structure in the evolution 
is apparent in the slow dephasing case of Fig. 2a but 
not in the fast dephasing case of Fig. 2b. In Fig. 2a, 
one sees not only the processes of self-trapping into the 
localized state and of the destruction of that state as 

in Fig. 1, but also two separate phases of the first process. 
In the first phase the probability difference oscillates 
around the value 0, there being no clue of self-trapping 
in the time evolution. This phase ends at about t = 20/V 
and then the localized state begins to be formed. The 
destruction of that state occurs between t=60/V and 
t = 125/V. These three time regions are marked by arrows 
in Fig. 2a. By contrast, nothing richer than oscillations 
that are damped out to the value 0 is seen in Fig. 2b, 
whose parameter values are the same as those for Fig. 2a 
except for ~/2V, which equals 6.4 x 10-3. The dephasing 
is so strong that it masks the formation of the localized 
state. Figure 3 shows the intermediate case: z /2V= 1.25 
and F / 2 V = 3 0  as in Fig. 2a and b, but the dephasing 
rate e, in units of 2V, equals 1.6 x 10 -3.  All three phases 
of the evolution are completely clear in Fig. 3. Even the 
final destruction of the localized state is essentially com- 
plete by t = 125/V. 

The question of the validity of the SLE used in [1], 
which provided the initial motivation for the present in- 
vestigation, is answered pictorially in Figs. 4 and 5. The 
main feature of the new SLE (12), which is absent in 
the earlier SLE (2), consists of the nonadiabatic charac- 
teristics (non-infinite relaxation) introduced in [9]. The 
new SLE (solid lines in Figs. 4 and 5) is therefore capable 
of exhibiting the formation of the localized state, while 
the old SLE (dashed lines in Figs. 4 and 5) is not. Both 
describe dephasing in the same way. The difference is, 
therefore, expected to be small for large e. Figure 4a 
and b show this to be true. In both cases, fast relaxation 
is considered (F/2V=40), and e/2V equals 6.4 x 10 -3. 
The nonlinearity ratio z/2V is 2.1 in Fig. 4a and 4 in 
Fig. 4b. Little qualitative difference exists between the 
predictions of (2) and (12), particularly in Fig. 4b. The 
adiabatic SLE generally predicts slower damping be- 
cause it lacks the additional damping agent (removal 
of energy from the quasiparticle by the vibrations) which 
the new SLE possesses. This difference in the damping 
times can be also seen in Fig. 5 where a slower dephasing 
rate (~/2V=4 x 10 -4) has been assumed. The relaxation 
rate F, in units of 2V, is 20 both in Fig. 5a and b. The 
nonlinearity ratio z/2V is 1 in Fig. 5a and nothing more 
than damping is seen from both equations. However, 
in Fig. 5b, where the nonlinearity is 1.25, the richer na- 
ture of the new SLE is obvious: it drives the evolution 
of the system towards its stationary state while the old 
SLE merely exhibits damped oscillations. 

4 .  D i s c u s s i o n  

The general issues under investigation in the present 
paper concern the transport of a quasiparticle moving 
in a crystal and interacting strongly with vibrations, the 
relaxation rates being finite and the temperature being 
non-zero. The particular system studied is a dimer. The 
point of departure for the analysis presented is a combi- 
nation of the physics presented in [8] and [9] on the 
one hand, and the stochastic techniques presented in 
[10] on the other. Equations (6) and (7) above describe 
that combination. The main new results we have ob- 
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tained are in (8), (9) and (12) and in Figs. 1 5. Equation 
(8) is an exact consequence of (6) and (7), whereas (12) 
is obtained as an approximation. The approximation 
consists of the assumption (10). It is a near-equilibrium 
approximation and its reliability generally increases as 
the temperature is increased. Our central result (12), 
while based on approximations such as (10), possesses 
many of the essential features necessary for the descrip- 
tion of the quasiparticle transport, and we suggest that 
it be used for the analysis of nonlinear transport in the 
same role as played by the linear SLE in linear transport 
situations such as in earlier treatments of exciton dynam- 
ics in molecular crystals and aggregates [3-7]. We also 
present the generalization of (12), first for an infinite 
chain with nearest neighbor interactions: 

i d pm, /d  t = V (pm+ 1, +Pro-  1,--Pro,+ 1 -- P m , -  1) 

-- Z(Pmm --P,n)  Pro, - - i ( zV / I4 )  Pmn(Pm+ lm 

+ P,~-1,~--  Pm,~ + l - P,~,,-1 -- Pn + l n -- Pn-  l n 

+P..+~ +P.,-1) 
--i~(1 - - 6 , . . ) ( p , . . - - p , n .  eq) (13) 

and then for an arbitrary crystal as in (1), m, n being 
vectors of appropriate dimensions: 

id p,,n/dt= IV, P]m,- Z(Pmm-P,,) Pmn 
-- i ( z / r )  p=,  (IV, p ] ~ = - -  IV,, p ] , , )  

--i~(1-- ~,)(pm.-- p=o ~ (14) 

These generalizations are obtained by replacing the 
probabilities prom(t) and pn,(t) in the nonlinear term (sec- 
ond term on the right hand side of (1)) by their respective 
values at a time t -  1/F, and then using a large F approxi- 
mation. This delay or lag is an effect of finite relaxation 
and has been explained in detail in [9]. The thermal 
fluctuation effect is taken for simplicity to be the same 
as in the dimer case: the off-diagonal elements of the 
density matrix are driven to their equilibrium values 
Pro, eq at the dephasing rate c~. 

The time evolution of the discrete nonlinear Schr6- 
dinger equation for the two-site system [2, 8-10, 12, 13] 
was analyzed in the adiabatic case in [2], [8] and in 
the nonadiabatic case in [9]. The augmentation of the 
former through damping terms was treated in [1]. The 
resulting equation, viz. (2), showed nonlinear evoluation 
at short times, and damping and equilibration between 
the two sites for long times, but was unable to describe 
the formation of the localized states [13. The description 
of such a formation process was natural to the analysis 
of Kenkre and Wu [9] who presented a physically sound 
mechanism of the removal of energy from the quasiparti- 
cle through its interaction with the vibrations. The gener- 
alizations of the analysis of [9] to finite temperatures, 
carried out by Grigolini et al. [10] provided us with the 
necessary tools to investigate the validity of the SLE 
of [1]. The primary result we have obtained in the pres- 
ent paper on that basis is the new SLE (12) (or its more 
general versions (13) and (14)). It describes the evolution 
of the complete density matrix in the presence of strong 

interactions with vibrations and, unlike earlier transport 
instruments, is not  limited to the case of infinitely fast 
relaxation (as is [1]) or to zero temperature (as is [9]). 

The new SLE we present has two kinds of terms: 
those which explicitly describe the finite-rate relaxation 
process and, therefore, clearly show the formation of the 
localized self-trapped states provided the nonlinearity is 
strong enough; and those which are responsible for the 
subsequent destruction of the self-trapped states through 
thermal fluctuations. Figures 1-3 make this clear. We 
would like to draw the attention of the reader particular- 
ly to Figs. 1 and 3, which clarify the unified description 
that our SLE provides for all the important phases of 
time evolution: the pre-trapping oscillations of the prob- 
ability, the formation of the self-trapped state, and the 
destruction of self-trapping through overbarrier motion. 

Our results concerning the validity of the old SLE 
are displayed in Figs. 4, 5. Our analysis has given the 
following answers to the questions posed in Sect. 1. The 
adiabatic SLE of [1] can be naturally combined with 
the nonadiabatic analysis of [1] through a stochastic 
theory of the interactions of the quasiparticle with a bath 
as shown here and in [10]. The adiabatic SLE need 
not be regarded as the result of an ad hoc augmentation 
of the discrete nonlinear Schr6dinger equation but con- 
stitutes a well-defined limiting case of the new nonadia- 
batic stochastic Liouville equation. The latter can be 
derived from the Fokker-Planck treatment, as we have 
shown here, with the help of the high damping assump- 
tion and the factorization procedure. While the nature 
of the derivation of (12) we have provided here makes 
it questionable for temperatures which are small enough 
to violate the approximation (10), we suggest that it may 
be feasible to use (12) even for intermediate temperatures, 
changing only the expression for the dephasing rate c~, 
given in (9). This suggestion is no more than an interpo- 
lation idea but has, for its support, the fact that (12) 
does appear to provide the qualitatively correct time evo- 
lution in all cases. We hope to report, on the basis of 
a study of the coupled hierarchy of the moments of the 
distribution function, detailed investigations of these 
conjectures in the near future. 

We mention in passing a rather interesting feature 
of the equilibrium distribution (11) we have obtained 
above. In the case of the linear dimer, Z=0, and (11) 
shows that the equilibrium value of r is the Langevin 
function L ( V / k B  T)  

req = (Pl 2 + P 21)eq = L( V/ks T) = co  th ( V/ks T) - (ks T/V).  
(15) 

This result is to be expected in the light of the representa- 
tion [14, 15] of a two-state quantum mechanical system 
by a dipole rotating in three dimensions [11]. However, 
req , which is nothing but the difference in the probabili- 
ties of occupation of the stationary states 1+)-(�89 
(Jl)+[2)) of the linear dimer, should be given by the. 
quantum mechanical equilibrium value 

r eq  = t a n h  ( V /k  B T) .  (16) 
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Both  (15) and (16) have the same qualitative shape but 
they certainly differ quantitatively. The difference stems 
from the fact that  we have not  used the second postulate  
of q u a n t u m  statistical mechanics  [16],  viz. the assump- 
t ion of r a n d o m  phases, in our  derivat ion of  (15). Tha t  
derivat ion treats a classical ba th  in interact ion with a 
q u a n t u m  mechanical  dimer. When  the second postulate  
is invoked th rough  the cons t ruc t ion  of  an ensemble, (15) 
does indeed reduce to the correct  q u a n t u m  mechanical  
result (16). Fur ther  subtleties are being worked  on and 
will be reported in the near future [17]. 

We acknowledge the partial support of the DOE under contract 
no. DE-FGD4-86ER45272. 
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