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An ecumenical nonlinear von Neumann equation:
fluctuations, dissipation, and bifurcations
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An evolution equation is presented to describe the transport of a quantum mechanical quasiparticle such as an electron,
or electronic or vibrational excitation, interacting strongly with lattice vibrations. A generalization of the discrete nonlinear
Schrodinger equation to incorporate dissipation and fluctuation effects arising from interactions with a thermal reservoir,
the equation predicts a multitude of interesting phenomena including bifurcations.

1. Introduction

Alwyn Scott has initiated, performed, stimu-
lated, and guided, an amazing amount of current
research in nonlinear physics. The community of
nonlinear scientists owes much to him. It is a
pleasure and an honour to be asked to make this
contribution to the Festschrift on the occasion of
his sixtieth birthday. The range of Alwyn’s work
in nonlinear science is vast. It spans a variety of
systems and approaches, and deals with practical
matters such as the problem of launching solitons
and the spectra of acetanilide, as well as formal
matters such as the dynamics of nonlinear
systems and the generalization of nonlinearities
[1-4].

The subject of the present article is the
ecumenical nonlinear von Neumann equation

, 40,
A= =V Pl = X(Prm = Pan)Prmn

=i % L1V Pl — [V p),)
— (1= 8, )(Pn — PIL) - (1)

Before describing the what, whence, and whither
of this equation, it is relevant to comment on the
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relation of the equation to Alwyn Scott. There
exists a nonlinear transport equation which goes
under the name of the discrete nonlinear Schrod-
inger equation (DNLSE), whose study has oc-
cupied many investigators, including the present
author [5-8], for several years. Equation (1) is
the augmented form taken on by the DNSLE,
when the latter is opened to heat reservoirs and
prepared for stochastic activities through the
introduction of dissipation and fluctuation. The
DNLSE, on the other hand, is identical in form
to the so-called discrete self-trapping equation
(DSTE), introduced earlier, and studied exten-
sively, by Alwyn Scott and his collaborators.
While identical in form, and therefore in the
relevance of a number of results such as con-
cerning stationary states, the DSTE and the
DNLSE differ significantly in physical meaning.
This is evident from the role played by quantum
mechanics in the two equations. The complex
nature of the amplitudes in the DNLSE are a
requirement of quantum mechanics and the
study of the interplay of phases and nonlinearity
is an undertaking of direct physical import. The
complex nature of the amplitudes in the DSTE,
on the other hand, is a convenience of the type
familiar in electromagnetism where fields, which
are actually real, are described by complex
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quantities for computational ease. There is, thus,
work on the “quantization” of the DSTE, which
appears to have no counterpart at all in the
context of the DNLSE. Also, the two equations
differ in physical origin. We begin with a brief
motivational discussion of the microscopic origin
of the DNLSE in the next section. After a quick
review of earlier work on the DNLSE in the
following section, we introduce noninfinite relax-
ation and thermal fluctuations, and arrive at the
ecumenical equation (1), which has been so
termed because it is capable of resolving the
competition and conflicts of nonlinearity and
damping, or of fluctuation and dissipation, since
it unifies the description of all these effects in
one fell swoop. The fascinating consequences of
the augmented equation will occupy us in the
rest of the article. The subject under investiga-
tion is the transport of a low or intermediate
mobility quasiparticle under strong interactions
with vibrations. Examples are an electron in a
narrow-band material, a vibrational or electronic
excitation in a polymer, and a light interstitial
such as a proton or muon in a metal. The
notation in (1) is standard: p represents the
density matrix of the quasiparticle, the matrix
elements are taken in the representation of some
localized states such as a Wannier set, and the
four terms on the right side arise from intersite
transfer, nonlinearity stemming from interactions
with vibrations, finiteness of vibrational relaxa-
tion, and thermal fluctuations, respectively.

2. Physical motivation of the DNLSE

Consider a moving quasiparticle described by
the ket [¥(f)) whose time evolution is governed
by the Hamiltonian H through iA(d[¥()))/dt =
H|¥(t)), i.e., the standard Schrédinger equa-
tion. On multiplying the equation by a Wannier-
like localized bra (m|, one obtains

mn-n

d
i = 3V, )

for the amplitudes c,, where the E’s and the V’s
are, respectively, the diagonal and off-diagonal
matrix elements of the Hamiltonian in the local-
ized basis. If interactions with vibrations are
present, the V’s and E’s are dependent on the
vibrational coordinates x. For simplicity, let us
take V,, to be independent of x, and E,, to
depend linearly only on the internal coordinate
x,, at site m. In the absence of interactions, x,,
might have evolved sinusoidally with frequency
» and equilibrium position 0. It might naturally
obey, in the presence of interactions,

d’x

m

ds’

+w’x,, = —const. X |c,,|”, (3)

where the equilibrium position of the oscillator is
changed by an amount proportional to the prob-
ability that site m is occupied by the quasi-
particle. In the presence of a time scale disparity,
if the vibrations are slaved by the quasiparticle
probabilities, the time derivatives in (3) may be
put equal to zero. The vibrational coordinate is
then proportional to the quasiparticle occupation
probability, and we obtain the DNLSE

dc
i3 = 2 Vi = Xlenle,n (4)

The above description of the origin of the
DNLSE is meant to convey only its essential
physical content. While we do not wish to discuss
here the many subtleties which the microscopic
derivation of the DNLSE entails {9,10], we now
give a brief description of how the DNLSE can
be obtained through a semiclassical approxima-
tion from the Hamiltonian evolution of the
standard model of a quasiparticle interacting
strongly with vibrations, viz.,

H= 2 smafnam + 2 Vm‘,,a:,,a,l
+ ; fiw (bib, +1)
-1/2
+N % fiw, g,

x exp(ig - R,,) (b, + b’ )a}a,, . (5)
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Equation (5) uses standard notation which we
will not detail here, except for stating that a and
b refer, respectively, to the quasiparticle and the
vibrations with which it interacts strongly. With

p=ala, —ala,, (62)
g =—i(ala,—ala)), (6b)
f=ala,+ala,, (6¢)
y=—(b"+b)/2g, (6d)

the Hamiltonian (5) can be written, for a simple
two-site symmetric system (a dimer) interacting
with a single vibrational coordinate, as

H=Vi+gop(d" +b)+w(d'b+1). (7

Here V denotes the interaction matrix element
for the quasiparticle transfer between the two
sites of the dimer, g measures the coupling
strength with the vibration of frequency w, and
we have put the (identical) site energy of the two
sites equal to zero. Henceforth we put £ =1.
Equation (7) then results in the following evolu-
tion for the quantities defined in (6):

dp .

a =e, (8a)
G _

dr pP—Xxry, (Sb)
¢

G =X (8c)
d’y s

o =—w’0-p). (84)

Let us now take the expectation values of the
operators in an initial state ¢, and denote these
values by removing the circumflexes, i.e., {=
(W|Z|@). The single assumption that § is classical
converts the exact dynamics into the DNLSE, as
it is trivial to show [6—8] that eqs. (8) rewritten
without the circumflexes represent the DNLSE
for the two-site system, the p, g and r being
nothing other than the standard Feynman den-

sity matrix element combinations of the two-site
system (dimer):

P=Pu1—Pn, 4=i(pa—py),
r=pp,tp;. 9)

While simple, the foregoing demonstration
makes transparent what crucial assumption is
responsible for the passage from microscopics to
evolution equations such as the DNLSE. It is
clearly the assumption that the vibrations may be
considered classical. This fact, while well known
to many, has often gone unappreciated. This has
led to numerous incorrect, although wishful,
assertions on the one hand and meaningless
queries on the other.

3. Nonlinear capture and trimer, N-mer
evolution

Before proceeding with the process of the
augmentation of the DNLSE into the ecumenical
form (1), it is of interest to recall the large
number of interesting and useful results which
have emerged from the DNLSE in a variety of
situations. Space limitations force us to do no
more than list the primary contexts of some of
that work, along with some slightly greater detail
on two specific areas, viz. nonlinear trapping
[11,12] and exact analysis of some spatially
extended systems [13,14]. For further descrip-
tion, the reader may refer to several more
detailed reviews [6-8].

The following is a list of some early work done
on the DNLSE, i.e., from the infinite relaxation,
zero temperature limit of (1):

(1) Exact solutions for the dynamics of the
two-state system for arbitrary initial conditions
and the elucidation of polaronic motion and self-
trapping on the basis of those solutions [5].

() Application to fluorescence depolariza-
tion, wherein the moving quasiparticle is an
electronic excitation and the observable is the



156 V.M. Kenkre / An ecumenical nonlinear von Neumann equation

intensity of light emitted with different polariza-
tions [6,15].

(3) Application to neutron scattering of hy-
drogen trapped around impurities such as oxygen
in metals such as niobium, where the moving
quasiparticle is the proton [16].

(4) Application to muon spin relaxation in
antiferromagnetic solids such as bcc iron wherein
the quasiparticle is a muon moving within a
solid, and the observable is spin polarization
[7,17].

(5) Generalization of the DNLSE to incorpo-
rate anharmonic potentials and nonlinear restor-
ing forces, resulting in nonlinearities other than
bilinear, and the appearance, and counterintui-
tive disappearance, of multiple stationary states
[6,18].

(6) Calculation of memories in nonlinear
generalized master equations, and the develop-
ment of a perturbative scheme which is exact in
the nonlinearity but perturbative in the intersite
transfer [19].

(7) Studies of the interplay of nonlinearity
and disorder on the basis of ensembles with
various distributions of the nonlinearity parame-
ter [6,7].

(8) Theory of nonlinear trapping of excitation
directed at fluorescence quenching in molecular
aggregates {11,12].

(9) Analytic solutions for a restricted class of
initial conditions in some spatially extended
systems such as trimers and symmetric N-mers
[13,14].

We refer briefly to the last two of these below.

3.1. Nonlinear trapping

Quasiparticle trapping is an important phe-
nomenon, and is of particular interest in areas of
investigation such as photosynthesis, in which
the harvesting of energy necessary for the oper-
ation of the reaction centers is followed by the
process of the transfer of the harvested energy to
the reaction center. The excitation carrying

energy, but no matter, is the quasiparticle, and
the reaction center is the trap [20,21]. Let us
assume that an excitation moves on a chain via
nearest neighbour interactions V, and trapped by
a site which has the nonlinear behavior arising
from strong interactions with vibrations leading
to the nonlinearity described by the cubic term in
the DNLSE. Of the several possible models of
capture, consider two: one in which one of the
sites in the chain is itself the trap site and
possesses the cubic nonlinearity, and another in
which the excitation moves in a region of space
called the antenna and communicates with a trap
which is external to the antenna. In a simple
example of the latter situation, the N antenna
sites all communicate equally with the external
trap through a matrix element W, while transfer-
ring excitation among themselves through near-
est neighbour elements V. The first model is
represented by
dc

i—cl—;"=V(cm+] +Cm—1)—5m,0/\"co'zco’ (10)
in obvious notation, while the second is repre-
sented by

dc,

i—dTm=V(cmH+cm_l)+Wc,, , (11a)
dc

'T:=W§Cm—xicelzcg . (11b)

Numerical calculations by Dunlap, Kenkre and
Reineker [11] on the first model have shown that
a transition appears to occur as the nonlinearity
parameter y crosses the value (3.2)V. The sec-
ond model has been solved analytically by Ken-
kre and Kus [12] who have shown that the
probability of the trap site, which we will call P,
obeys

d&’P 2
dr? =5, —nl,) — (L, +7n" + P

~ 3P’ —2£°P° (12)

where, with the notation that w is defined as
\/NW, the scaled time 7 and the parameters £
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and n are 7 =2wt, £ = y/4w, and n =V/w, the I’s
being constants of the motion. Clearly, ¢ mea-
sures the amount of nonlinearity relative to the
(scaled) interaction matrix element for transfer
of excitation between the antenna and the trap
while » measures the motion of the excitation
within the antenna relative to the extent of its
transfer from the antenna to the trap. Equation
(12) can be solved in terms of Weierstrassian
elliptic functions. A completely general solution
to the problem has been obtained for arbitrary
initial conditions, and a number of physical
features have been extracted [12]. The analysis
has also been generalized to finite relaxation and
finite temperature situations.

3.2. Spatially extended systems: analytic results

The methods of analysis used in the early work
[5] to obtain exact solutions in two-site systems
were generalized by Andersen and Kenkre to
some larger systems-including trimers and a class
of extended systems termed N-mers [13,14].
They obtained the explicit time dependence for
the trimer for a class of special initial conditions,
discussed a transition at y = —6V as well as the
effect of the sign of the nonlinearity, and showed
the connection of their results to the trimer
stationary states obtained earlier by Eilbeck et
al. [3]. They generalized the work to N-mers,
also obtaining explicit analytical solutions. The
systems considered were site-degenerate with
V... =V between any two sites, the initial excita-
tion being localized on a single site, or more
generally, distributed equally among all sites of
one of two groups, one of m, sites and the other
of my =N — m, sites. The calculational trick of
Andersen and Kenkre [13,14] consists of the
generalization of (9) to define new quantities p,
g, and r, which allow one to convert the trimer
or N-mer problem as described by

dc
5== —iV(—cm +2 6,,) +ixle,|’c,, (13)

into a completely tractable non-degenerate
dimer problem [22] involving the solution of

dzp

4= 2% 6mp - 6v.p” = 2v:p° . (14)

Some of this work is reappearing in the literature
and is being applied to experimental situations.

4. Finite relaxation and thermal fluctuations

How do we augment the DNLSE (4) to treat
situations not involving time scale disparities
between the quasiparticle and the vibrations, to
eliminate unrealistic assumptions such as that of
infinite vibrational relaxation, and to include
unavoidable, and important, interactions with
reservoirs which give rise to temperature effects
and fluctuations? This is the question that we
now address. Equation (4) is the result of a time
disparity assumption made on (2) and (3). We
now retain (2), and replace (3) by

2
%+7%+ w’x,, = ~const. X |c,.|*+R,(¢),

(15)

and explore the consequences of dissipation
introduced by the rate vy, and of fluctuation
caused by the random force term R, (). For
simplicity, we have used the restriction that the
reservoir interaction occurs only with the vi-
brational system. Two limits of (15) are par-
ticularly interesting: zero damping, and extreme-
ly large damping. Some exact solutions can be
found for the former case [23] for the dimer. The
probability difference p(¢r) shows cn or dn be-
havior as in the adiabatic solutions [5] and
undergoes a characteristic new transition into a
region where it equals the sum of a part which is
proportional to the appropriate elliptic function
(cn or dn), and a part which is proportional to the
cube of the elliptic function. Here, we will focus
on the opposite limit of extremely large damp-
ing.

If the damping is large enough to justify the
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neglect of the second derivative of the oscillator
displacements, more formally, if w— %, y— oo,
w’/y =T, the evolution of the oscillator displace-
ments towards their equilibrium positions now
possesses a single characteristic ‘“‘vibrational re-
laxation™ rate I'. Restricting the analysis to the
two-site system in the interest of full tractability,
we obtain from (2) and the large damping limit
of (15),
%’:=2Vq, %= —2Vp —xyr, —dé=xyq,
(16a)

Y _ o _ 2
& =Ty —p)+F@), F)=2I(KT/w)8(),
(16b)

where k is the Boltzmann constant.

Equations (16) constitute a Langevin set.
Standard techniques allow the derivation of an
exact Fokker—Planck equation for the distribu-
tion function in p, ¢, r, y space and of an
approximate but useful Fokker—Planck equation
for the distribution function o(p, q,r;t) in p, g,
r space alone. The latter is obtained [24] through
the application of projection techniques which
eliminate the vibrational variable y, and is valid
in the high damping limit. The Fokker—Planck
equation can be solved exactly for its stationary
state distribution function, and the formalism
can be used in two separate ways: (i) to perform
a Kramer’s first passage time analysis aimed at
an investigation of the stability (against thermal
fluctuations) of the nonlinear structures inherent
in the DNLSE, and (ii) to carry out a contrac-
tion analysis [25] from the Fokker—Planck equa-
tion in order to arrive at a closed equation such
as (1) for the quasiparticle variables. We refer
the reader elsewhere [24] for (i), and concen-
trate on the results of (ii) here. The contraction
analysis has, as its consequence,

dp

ar = 2vg , (17a)
dg 2Vy

a —2Vp — xpr + T 9 —aq, (17b)

dr 2Vx
AXPA 4 e —ry) (17¢)

Here, r., is the thermal equilibrium value of r,
and « is a rate which attempts to drive the
system to the thermal state. A high temperature
expression [25] for this rate is a = (2y/I")kT.

The set of equations (17) have been arrived at
by extending the DNLSE to nonadiabatic, finite
temperature situations through a blend of
analytic arguments and physical assumptions.
The system they describe reduces to the trivial
linear dimer if y =0=a, to the high-tempera-
ture damed linear dimer if y vanishes but « does
not, to the nonlinear adiabatic dimer if y is finite
but I' is infinite and « vanishes, to a relatively
crude extension [26] of the nonlinear dimer to
dissipative situations if y is finite but I' is infinite
and « vanishes, and to the nonlinear
nonadiabatic dimer if y and I' are finite and «
vanishes. The latter case displays a rich multi-
tude of phenomena including a fascinating inter-
play of quantum phases and nonlinearity, for
which we refer the reader to refs. {27]. Evolution
showing a complete combination of the elliptic
function evolution of the adiabatic dimer for
short times, followed by a self-trapping swing
into the localized stationary states of the dimer
for longer times, which is itself followed by a
delocalization and symmetrical spreading over
the two sites characteristic of thermal fluctua-
tions, has been exhibited and commented on in
ref. [25] for the high-temperature case when 7,
which can generally be taken to equal tanh(V/
kT), vanishes. Exciting new behavior, which
occurs when r., does not vanish, will now be
mentioned here briefly.

For vanishing «, the probability difference p
oscillates and then tends to the stationary value
which is 0 if the nonlinearity parameter is small
enough and finite (corresponding to a localized
state) if it is large enough. As « increases, the
detrapping effect is seen: p tends to 0 at larger
times even for large nonlinearities. As « in-
creases further, a surprising burst of p occurs for
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a short time, and the burst recurs after a time
period. The bursts become more frequent with
further increase of a and behavior that appears
chaotic occurs. Phase space plots in the p-g
plane show that a limit cycle has been reached at
this point, as p (as well as g) oscillates steadily
between two finite values (see (iv) and (v) in fig.
1). A further increase in a destroys the limit
cycle, and stable dissipative behavior is recov-
ered (case (vi)): p, q tend to vanishing values
while 7 tends to .. Stability analysis carried out

by Kenkre and Kus~ [26] shows that the destruc-
tion of limit cycles occurs for a >r x/T; i.e., for
temperatures exceeding that at which V/kT
becomes smaller than its hyperbolic cotangent if
x and I' are assumed to be independent of
temperature.

This bifurcation behavior is reflected in excit-
ing predicted features of several observable
quantities [26]. An example is the degree of
fluorescence polarization in poly-L-proline oligo-
mers of variable length, which is given [6] by a

(iv)

(v)

(vi)

Fig. 1. p-q phase space plots from (17), the dimer form of (1), showing bifurcaton behavior. Each frame extends from —1 to 1
on the horizontal p and the vertical g axis, and the initial condition is of one-site occupation, i.e., p =1, ¢ = 0. The nonlinearity
x/2V is larger than 1: localized states exist. The values of «/2V are (i) 0.002, (ii) 0.00968, (iii) 0.04685, (iv) 0.22676, and (vi)
1.09752. In (i), one sees clear evolution to the self-trapped stationary state (p <0) followed by symmetrization (p = 0) as a result

of thermal fluctuation. Limit cycles are destroyed in (vi).
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linear superposition of p and r, the coefficients of
the superposition being subject to experimental
control.

5. Concluding remarks

The derivation of (1) has proceeded through a
combination of exact analysis and physical argu-
ments. The semiclassical approximation which
yields the DNLSE, the reservoir interaction, also
introduced classically, which results in the Fok-
ker-Planck equation, the high damping limit,
the contraction analysis from the Fokker-Planck
equation, and the generalization from the dimer
back to the extended system necessary to pass
from (17) to (1), are the primary ingredients of
that combination. We have seen the rich
behavior that emerges from (1). It encompasses
simple linear evolution, reflects the characteristic
features of nonlinear dynamics, describes the
settling of the system into stationary states as a
result of dissipation and finite relaxation, and
predicts fascinating bifurcations. What is re-
quired in future investigations, in the opinion of
the present author, is not only a better under-
standing of the range of validity and applicability
of this and similar transport instruments, but also
(and especially) work on the design of specific
experiments on the basis of the kind of theoret-
ical predictions that have been described in the
present article. The depolarization of fluores-
cence, the scattering of probe particles such as
neutrons by light interstitials, the quenching of
fluorescence via trapping, and the evolution of
transient gratings are particular candidates for
the experimental probe. It is hoped that the
development of theoretical analysis and the
design of experiments will occur in close collabo-
ration in the near future.
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