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We present model calculations to describe the phenomenon of nonlinear trapping in molecular aggre-
gates such as can occur during excitation transfer from an antenna to the reaction center in a photosyn-
thetic unit. Our calculations are analytical and proceed from the discrete nonlinear Schrodinger equa-
tion introduced recently as the appropriate transport instrument in the analysis of excitation transfer in
the presence of strong interaction with molecular vibrations.

I. INTRODUCTION

Trapping of quasiparticles constitutes an extremely im-
portant phenomenon in condensed matter physics. While
widespread, it is of particular interest in areas of investi-
gation such as photosynthesis, in which the harvesting of
energy necessary for the operation of the reaction centers
is followed by the process of the transfer of the gathered
energy to the reaction center, i.e., the trap. Much work
has been done on the trapping process.! ® Trapping has
been sometimes modeled via the introduction of a cap-
ture or sink term in a variety of equations of motion for
the moving entity.! > The equations themselves have
been the Master equation representative of completely in-
coherent, i.e., diffusive, motion,""> the Schrodinger equa-
tion representative of purely coherent motion,*® com-
bined equations such as the generalized master equa-
tion>® and the stochastic Liouville equation’ capable of
describing coupled coherent and incoherent transport,
continuous-time random walk equations,” and even the
linearized Boltzmann equation.® The modeling of the
capture process has been done in several different ways
and interesting names such as pendant models,' sink
models, and substitutional models®® have been assigned
to the systems analyzed.

We describe here some work that we have been in-
volved with recently in the nonlinear trapping of excita-
tion. The nonlinearities that we are interested in are as-
sociated with polarons or solitons, and arise as a result of
strong interactions of the moving quasiparticle with the
vibrations of the solid. The basic equation of motion
used to describe transport in the presence of such non-
linearities is the discrete nonlinear Schrodinger equation
(DNLSE). This equation has been motivated, used, and
reviewed recently.’ !> The nonlinearity it entails is cubic
in the quantum-mechanical amplitude of the moving ex-
citation, and it can give rise to interesting phenomena
such as localization, band narrowing, and self-trapping.
In the present context, our interest lies in systems in
which the trap alone possesses nonlinearity, the rest of
the quasiparticle motion being linear. If excitation moves
on a chain of sites m, n, etc., via interactions taken to be
nearest neighbor (of strength ¥) for simplicity, and is
trapped by a site which has the nonlinear behavior aris-
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ing from strong interactions with the vibrations men-
tioned above, it is natural to think of three different mod-
els.]? In the first, one of the sites in the chain is itself the
trap site. It is nonlinear in that the energy of the quasi-
particle is lowered by an amount proportional to the
probability of occupation of the trap site whenever the
quasiparticle occupies the site. Thus,

dc,,
dt

i =V(cp 11+ Cm 1) =8 maXlcol?co (1.1)
represents this model, c,, being the amplitude for the ex-
citation to be on site m. For discussions of the micro-
scopic origin of the nonlinear term, we refer the reader to
the reviews mentioned above.!* 15 A different possibility
would correspond to the situation in which the particle
may move from one particular site, for instance, at
m =0, to the trap site 6 which is considered to be exter-
nal to the chain. One would then have

dc

Y mo
j——=

a Vic, 1, —1)+0,0Wcy

(1.2a)
to describe the evolution in what may be called the anten-
na part of our system, and

dcy

— = Wco_)(|09}209

ar (1.2b)

to describe the evolution of the trap amplitude ¢4 Of
these two models, the first describes a trap which is em-
bedded in the system, while the second involves commun-
ication of the antenna with an external trap. In particu-
lar, this communication is shared between the trap and a
single antenna site in the model represented by (1.2). A
third physical model is one in which this communication
of the trap with the antenna occurs equally from all the
antenna sites. We then have

dc,,
i o =V(c, +1tCm_1)+Wey, (1.3a)
dc
—2 (1.3b)

I d =W2cm _X|C9|2C'0 .
t m

The first model was analyzed by Dunlap, Kenkre, and
Reineker!® via numerical calculations. They found that a
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transition appears to occur as the nonlinearity parameter
x crosses the value (3.2)V. We will remark on the second
model elsewhere. The present paper examines the third
model, i.e., (1.3).

This paper is outlined as follows. In Sec. II, we present
the method of investigation, and obtain an analytic solu-
tion for arbitrary initial conditions. In Sec. III, we obtain
exact solutions for the particular case of initial occupa-
tion of the antenna. Stationary states are discussed in
Sec. IV. Concluding remarks form Sec. V.

II. ANALYTIC SOLUTION
FOR ARBITRARY INITIAL CONDITIONS

As is clear from (1.3), the model we analyze consists of
an N +1 site system forming the antenna, which is a ring
consisting of N sites, surrounding a central trap site. In-
tersite interactions involve only the nearest neighbors
within the antenna, whereas the trap is coupled to all the
antenna sites. Equations (1.3), which describe the evolu-
tion of this system, can be solved for arbitrary initial con-
ditions. First, we perform the discrete Fourier transform
on the ¢, variables. We introduce the “Bloch state am-
plitudes”

(2.1

cke ~tkm (2.2)

Substituting (2.2) in the original equation (1.3a) gives

¢k=—2iV (cosk )cF+V'N W8, cq - (2.3)

We see that the equation for the zeroth Fourier com-
ponent and the original equation (1.3b) form a closed sys-

tem of two nonlinear equations:
¢o=—iVNWc'+ixlcyl?c,y , (2.4)

1 N
I, =P+S=|col?+|c,[*=col*+ |—=
1 |c0‘ |cs| Ce' \/N m2=1cm
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¢0=—=2iVc®—iV'NWe, , (2.5)
whereas the remaining Fourier components ¢ k k=0, can
be found trivially from the linear homogeneous equation
(2.3).

It has been shown in previous work on the nonlinear
dimer and other extended systems® ! that the analysis of
equations such as (2.4) and (2.5) is facilitated by the intro-
duction of the density matrix p explicitly. We rewrite the
zeroth Fourier mode amplitude as c¢,=c° define
puv=c,Cy, where the subscripts take on the values s and
6, and introduce the quantities

P=pge, Q=i(pg;—pse) » 2.6
R =(pg; +pse), S=py -

Straightforward calculations lead to
P=—S=wQ, (2.7a)
Q=—2w(P—S)—2VR —xPR , (2.7b)
R=2VQ +xPQ , (2.7¢)

where w is defined as V'N W. The nonlinear system of
Egs. (2.7) has three integrals of motion:

I,=P+S, (2.8)

,=r-Xp-2Yp, (2.9)
2w w

I,=4P(P—1,)+Q>+R?. (2.10)

The constants of motion I; and I, have a simple interpre-
tation for the case of equal population of all antenna
sites, represented by

I;=4P(P —1)+Q*+R*=4|co|X|cyl?—1)—(cycr —c,c P+ (coc* +c el )?

=4|colM|cgl>+ e, 12— 1)=4|cy|%|cyl>*+Nle,I*—1)=0 .

Both these results are consequences of the conservation
of total probability. Although the integrals I, and I, are
not immediately connected to the probability conserva-
tion for general initial conditions, it is easy to check that
they indeed remain constant during any evolution
governed by (2.7). The constant I, has well-known coun-
terparts in the analysis of the nonlinear dimer”!3 as well
as of the trimer and n-mer.'?

We now use the integrals of motion I, and I, to obtain
a single equation for the primary variable of interest, viz.
P, the probability of occupation of the trap site.
Differentiating both sides of (2.7a), and using (2.7b) after

¢, (0)=¢,(0), n=2,3,...,N . (2.11)
In this case,
2 N
=|C(9|2+N|C1|2=|C9|2+ > ]Cm|2=1 s (2.12)
m=1
(2.13)

[
expressing S(¢) and R (¢) in terms of P(¢) with the help
of the constants I, and I,, respectively, we get

2
d—:=g(11—nlz)—(§12+n2+1)P—3§~qP2—2§2P3 .

QU

(2.14)

In (2.14), we have used the scaled time 7=2wt and have
introduced the parameters

14
.

=__X__ ==
3 ! (2.15)
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The parameter £ measures the amount of nonlinearity
relative to the (scaled) interaction matrix element for
transfer of excitation between the antenna and the trap.
The parameter 1 measures the motion of the excitation
within the antenna relative to the extent of its transfer
from the antenna to the trap.

Multiplying both sides of (2.14) and dP/dt and in-
tegrating, we obtain

2 2
P _ypy—upy)+ |42 (2.16)
dT dT 7=0
with P, =P(0). The quartic potential U (P) reads
U(P)=&*P*+26nP3+h,P2+h P, 2.17)

where the constants 4, and h, are linear combinations of
I, and I, given by

hy=nl,—I,,
hy=EL,+n*+1 .

(2.18)
(2.19)

The solution of (2.16) can be written in terms of the
Weierstrass 2 function as was done previously for a non-
linear nondegenerate dimer!” as well as for the trimer and
the n-mer:!*

6U'(P,)
24P(1,8,,8,)+ U"(Py)

P(1)=P, (2.20)

In (2.20), the invariants g, and g; of the Weierstrass
function are given by

g,=1h3+1h, —EU(P,),
83 = 1ich3 — 5 &3 + bk, — 18k, +071U(P,)
(2.22)

and U’ and U" denote the derivatives of the potential U.
The functions Q(7), S(7), and R (7) can now be expressed
in terms of the function P(7):

d

(2.21)

Q(r)=2——P(7), (2.23)
dr

R(7)=I,+2EP*1)+2qP(1), (2.24)

S(r)=I,+P(7) . (2.25)

Recalling the definition (2.6), we find that the relative
phase between ¢, and ¢; is determined by the equations

R(7) Q(r)

cosy() VPGS0 siny(7) VPS
Equations (2.20)—(2.26), together with
ckr)=c*0)exp(—inrcosk), k#0 (2.27)

constitute the solution of the full problem for arbitrary
initial conditions.

III. ANALYSIS OF THE CASE
OF ZERO INITIAL OCCUPATION OF THE TRAP

Equation (2.16) can be used to find the occupation
probability of the trap site for arbitrary initial conditions.
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However, the character of the evolution of the system
can be appreciated better by considering special cases and
investigating the nonlinear potential U (P) corresponding
to them. Let us consider the situation c4(0)=0 and
¢,(0)=1/V'N, which corresponds to the trap being
unoccupied and to a uniform distribution of the initial
probability among the antenna sites. In this case, we
have

P(O):Q(O)ZR(O)Zd—P

=0, S(0)=1.
= (0)=1

(3.1)

The constants we have introduced in Sec. II have the sim-
ple values

I,=1, I,=0, h,=—1, h,=7n*+1, 3.2)

and the nonlinear potential has the form

U(P)=P[&*P*+2qEP*+(n*+1)P —1]=PU(P), (3.3)

where

U,(P)=EP*+29EP* +(p*+1)P—1 . (3.4)

The evolution starts from the point P =0, where
U(P)=0. Since U’'(0)=—1<0, the motion proceeds in
the direction of positive P. Except for the case n=—§,
which means that the antenna intersite interaction and
the scaled antenna-trap interaction are equal in magni-
tude and opposite in sign, the system never reaches the
point P =1 corresponding to full occupation of the trap
site, since U(1)=(£+7)*>0=U(0). We also have

U, ()=(E+7n)?>0>—1=U,(0), (3.5)

which leads to the conclusion that there exists at least
one positive root P, of U,(P) between P=0 and P=1:

U,(P,)=0, 0<P, <1 (3.6)

The motion is thus confined to the interval between the
points P=0 and P=P,, where P, is the smallest of the
values which fulfill (3.6). The confining interval is
traversed periodically in both directions during the evolu-
tion. The length of the interval varies with the parame-
ters £ and 7 and can undergo an abrupt change if another
root of U, appears between P =0 and P=1. Obviously,
because U, has different signs in the points P =0 and
P =1, the total number of roots between these two points
must be even. The necessary and sufficient condition for
U, having three real roots is that the discriminant A of
the third-order equation U,(P)=0 is smaller than zero.'?
In addition to the parameter £ =Y /4w introduced earlier,
we define

a=y - 7
Then, for U,(P) given by (3.4), the condition reads

2
1 <0.

__ b 1
52 3a2

27

21

2
SRl PR

a

A=4
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The inequality (3.8) is fulfilled if and only if

9+§>0

a
and (3.9)
B_z&2B.,
where

_ 1 9 27  (9a+8)"?

B+ —?—E—?‘——MT (3.10)

To ensure that all three roots of U, lie between 0 and 1,
we impose another condition, viz.,

0=Pmax <Pmin =1, (3.11)
where
5 ’ 3 |2
Pmux =77 ;+ ;3—-? , (3.12)
112 1 3 12
Pmin = =3 1 ?—? ) (3.13)

are, respectively, the values of P at the local maximum
and minimum of U,. Because U ,(ft o )=x*o, if U; has
three real roots, we must have U, (p.x) >0, U (ppmin) <O,
and p, .. <Pmin- It is now obvious that all roots of U, lie
between O and 1 if and only if p_,, and p;, fulfill (3.11).
Such a condition implies
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a<0, L>1-|1—2
£ a

(3.14)

Different shapes of the potential shown in Fig. 1 corre-
spond to different regions in the (a,§) plane. We stress
the physical meaning of the parameters used in the plots:
they represent, as (2.15) and (3.7) show, the value of the
nonlinearity relative to the antenna intersite transfer and
to the antenna-trap transfer, respectively. The abrupt
change of the confining interval mentioned above is illus-
trated in Fig. 2. The depicted situation corresponds to
a=—1 and three different values of the parameter §&.
For £=2.25, the shape of the potential confines the
changes of trap probability to the interval from P =0 to
about P=0.3. As one lowers the trap nonlinearity and
takes £=2.0, the motion still takes place between the
probability values P=0 and P=0.5. This means that the
excitation is confined primarily to the antenna. However,
as the nonlinearity is lowered further, and £ assumes
values only slightly smaller than 2.0, P oscillates between
Oand 1. We now have a delocalized state and much more
efficient transfer of the excitation to the trap. This type
of transition takes place whenever we cross the line {=f
in the parameter space.

The detailed analysis of the trapping process for initial
occupation of the antenna that we have presented above
can be repeated easily for the case of the initial occupa-
tion of the trap. More involved initial conditions involv-
ing unequal distribution among the antenna sites can also
be treated with the help of the expressions derived in Sec.
II. We have taken the antenna sites to be energetically

X/4V=-1.10
X/4w=3.20

FIG. 1. Quartic potential
U(P) determining the evolution
of the excitation probability P
for the trap site in the case of no
initial trap occupation, for vari-

ous values of the parameters.
The shaded regions represent the
intervals in which the system
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0.6
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motion occurs. We see that, de-
pending on the values of the sys-
tem parameters, the system may
be confined to the vicinity of
P =0 [as in (b) and (c)] or can
reach values close to P=1 [as in
(a) and (d)]. The former corre-
sponds to inefficient trapping
while the latter describes the
kind of situation that would be
desirable in a photosynthetic
unit.

X/4V=-1.10
X/4w=2.25
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FIG. 2. Potential U(P) for
parameters values near the tran-
sition between localized and
delocalized states. The values of
the probability P are confined to
the left well of the potential (as
is the case for y/4w=2.25 and
x /4w =2.0) unless the value at
the central peak is smaller than
0 (as is the case for
x/4w=1.75).

FIG. 3. Trap probability in the stationary

state as a function of the nonlinearity parame-
ter y /4w for two different values of the param-
eter a: (a) a=—1.0and (b) a= —0.5.
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degenerate relative to the trap site. The inclusion of an
energy difference has some interesting consequences
which will be reported on elsewhere.

IV. STATIONARY STATES

The stationary states of our system are obviously of in-
terest. If we introduce dissipation explicitly into the sys-
tem by following the method of Ref. 10, we are
guaranteed to find the system evolving at large times to
the stationary states of the (dissipationless) system of
equations (1.3). We can find these states in the standard
manner by writing

co=Cgexp(—iQt), c,=cC,exp(—iQt), 4.1)

where () is the energy of the stationary state. An
equivalent, and practically easier, method!* of obtaining
them is by putting the left-hand sides of (2.7) equal to
zero. We get

0=0, 2w(S—P)=2VR+xPR . (4.2)

The solutions can be determined particularly easily in the

case of homogeneous antenna occupation, i.e., ¢, =c;.

As we know, in this case, I, =1 and I;=0 [cf (2.12) and

(2.13)]. Using these integrals to eliminate S and R in

favor of P, we get, from (4.2),

2
+(1-2P)*=0.

P(P—1) (4.3)

woow

Equation (4.3) has allowed us to study the dependence
of the stationary state trap probability on a variety of pa-
rameters involving the nonlinearity. Of the large number
of possible graphical outputs of our study, we have shown
in Fig. 3 the dependence of the stationary state trap prob-
ability P, i.e., the solution of (4.3), on the nonlinearity pa-
rameter £ =Y /4w, for two values of the ratio a=y /4V.

V. CONCLUSIONS

We have presented here some model calculations for
nonlinear trapping. The evolution in the antenna sites is
assumed to occur via the ordinary (linear) Schrodinger
equation. Nonlinearity arising from strong interactions
with vibrations is assumed to exist at the trap site. The
form of the nonlinearity is as given by the discrete
nonlinear Schrodinger equation. The geometrical
configuration of the trapping process is as modeled by a
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number of earlier authors, for instance, Lakatos-
Lindenberg, Hemenger, and Pearlstein.! The method of
solution follows our earlier work on the discrete non-
linear Schrodinger equation and consists of writing non-
linear density matrix equations and obtaining solutions
for the quantity of interest such as the trap probability.

We have shown the general method of solution, studied
in detail the case of initial antenna occupation—which
has special relevance to areas such as photosynthesis—
and have obtained explicitly the stationary state trap
probability. The latter is a clear indicator of the depen-
dence of the trapping efficiency on nonlinearity parame-
ters. We stress here that, unlike what is done in most
studies of trapping, we have not assumed the trap site to
provide any external sink rate in our model. The self-
trapping phenomenon inherent in the discrete nonlinear
Schrodinger equation is itself responsible for the capture
of the excitation. The analysis is applicable to physical
systems in which excitation in reaction centers (traps) in-
teracts much more strongly with vibrations than excita-
tion in the antenna sites.

We comment in passing on an interesting characteristic
of our model which is apparent even when the evolution
is linear. Since the antenna sites are all energetically
equivalent to the trap site, we appear to have a problem
of transfer between a pair of degenerate states: the trap
state on the one hand and the entire antenna “‘state” on
the other. However, if we diagonalize the part of the
Hamiltonian which describes the motion in the antenna,
we can obtain the N Bloch states which are the antenna
eigenstates, each labeled by the value of the quasimomen-
tum k, lying between 0 and 7. It is easy to see, then, that
the trap state will transfer excitation only to a single
Bloch state, indeed the one with k =0. There will be no
other interactions in the system of the trap state and the
k states. Now we clearly have a situation of excitation
transfer between two nondegenerate states: the trap state
and the k£ =0 antenna state, which differ in energy by the
amount 2V. This energy difference equals half the band-
width for excitation transfer within the antenna. Surely,
calculations, if carried out exactly in either picture, will
give correct (equivalent) results. However, if approxima-
tions are introduced for analytic tractability in a complex
system, inequivalences might indeed arise. One sees that
there would be considerable sensitivity of the results to
the energy difference between the trap state and the an-
tenna states.!’

*On leave of absence from the Center for Theoretical Physics,
Polish Academy of Sciences, Warsaw, Poland.
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FIG. 1. Quartic potential
U(P) determining the evolution
of the excitation probability P
for the trap site in the case of no
initial trap occupation, for vari-
ous values of the parameters.
The shaded regions represent the
intervals in which the system
motion occurs. We see that, de-
pending on the values of the sys-
tem parameters, the system may
be confined to the vicinity of
P =0 [as in (b) and (c)] or can
reach values close to P=1 [as in
(a) and (d)]. The former corre-
sponds to inefficient trapping
while the latter describes the
kind of situation that would be
desirable in a photosynthetic
unit.



