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The two limiting cases of dipole-allowed excitation transfer rates between molecules,
w~ 1/R® (Perrin) and w ~ 1/R® (Forster), where R is the separation, may be obtained
as well-defined limits of a single function w(R). The demonstration is based on a model
which allows the interaction strengths and relaxation rates to be compared explicitly and
which has a generalization describing the situation in real molecules.

If a quantum mechanical system is placed in
one of two degenerate states, each having a sharp-
ly defined energy and being coupled only to the
other by an interaction matrix element #, the oc-
cupation probability oscillates between the two
states at an angular frequency lul/Z. One might
define a “rate of transfer” as the reciprocal of
the time required for the probability to build up
to unity in the originally unoccupied state, or

w =4lul/h, @)

where % is Planck’s constant (277%). Equation (1)
is often taken as the appropriate rate of “fast
transfer” of electronic excitation between identi-
cal molecules, frequently via a dipole-dipole in-
teraction # = kp2/R®, where k is a geometrical fac-
tor, uis the magnitude of the transition dipole
moment, and R is the intermolecular separation.
Between weakly interacting molecules the rate of
excitation transfer is defined via an application

of time-dependent perturbation theory as

w =4n%|u|?/h A€, (2)

where A€ is a factor roughly given by the spread
in energy of the optical band associated with the
transitions involved in the energy transfer.
Equations (1) and (2) or their equivalents are
now a standard part of the large literature of ex-

Copyright © 1974 by

citation transfer. There is an excellent review!
by Forster, who first derived the explicit form
of A€ in Eq. (2), and the conditions under which
(1) and (2) apply were stated by Simpson and Pe-
terson® and thoroughly analyzed by Robinson and
Frosch.® Experimentally Eq. (2) or its equivalent
has been confirmed in a wide variety of transfer
experiments, for both like and unlike molecules,
and for various interaction mechanisms.* While
this is not true of Eq. (1) its strong coupling case
is more naturally manifested in the appearance
of a spectral splitting® proportional to lul.

As derived, Egs. (1) and (2) apply to a pair of
molecules but they have been used extensively in
qualitative discussions as hopping rates among
systems of many molecules. The full description
of probability flow in the analog of “fast transfer”
in extended systems has been treated numerous
times.® In the corresponding “slow-transfer”
problem the rate (2) appears in the Pauli-type
rate equations for the exciton motion, as first
proposed by Forster” and elaborated upon by nu-
merous authors.®

Recently descriptions of excitation transfer in
extended systems have been developed in terms
of density matrix equations and equations for the
mean square displacement of the excitation,®™*!
but there has been no explicit quantitative connec-
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tion made between Eqs. (1) and (2). In fact, since
the derivations of Egs. (1) and (2) are based on
different definitions of the rate, it has been sug-
gested'? that they could probably never be com-
pared in principle. An examination of the prob-
ability evolution for a pair of molecules shows
that this suggestion is correct in a literal sense.
If the evolution follows a Pauli-type rate equation
[from which Eq. (2) is derived] the probability in
the originally unoccupied state never builds up to
unity and the definition leading to Eq. (1) becomes
useless. Conversely the definition of w used in
the “slow-transfer” case (the true rate of prob-
ability transfer at { =0) predicts the equally use-
less result zero, when applied to the “fast-trans-
fer” situation. A unique generalization of the two
rate definitions is thus indeed impossible. How-
ever, we show here how the main contents of Egs.
(1) and (2) may be obtained as limiting cases of a
single expression based on a single definition of
the transfer rate. The theory also ascribes a
width to the region in which the rate goes from
the lu| to the lu{? dependence (R™%to R™%, in the
case of dipole interactions).

The first step in this demonstration is the re-
definition of w in the more natural framework of
exciton motion in a many-body, rather than a two-
body, system. Consider, for simplicity, a linear
chain of molecules with intermolecular spacing a.
In terms of the mean square displacement {x2)
=(m®»a*= (], ,m*a*P,)/}; P, where P, is the
probability that the excitation is on molecule m,
we define the rate w as the inverse of the time
required for (x2) to build up from 0 to the value
@®. An explicit equation'® governing the evolution
of {(x?) has been given by one of us. In the pres-
ent context it yields

L) [Fas o(s), ®

where
<A> :[ZnPnEman(m _n)zaz]/Z'an

F,, are the transition probability rates, and ¢(¢)
is the normalized “memory function” appearing
in a non-Markoffian equation’* for the probability
evolution. The derivation of such an equation, a
prescription for obtaining ¢ () from optical spec-
tra, and the particular form of ¢(f) for an actual
system have been given earlier by the authors.!!
From Eq. (3), our definition of the rate w leads
directly to

(A)fo”wdt fotds o(s)=a? (4)
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Consider the further simplified model wherein
the transfer matrix element is zero except be-
tween nearest neighbors and ¢ () is approximated
by an exponential. In this case!!

an ¢(t):2]u|2ﬁ'2e'°‘t(6m'"+l+5m’n_l), (5)

and Eq. (4) yields for large systems (L >a where
L is a measure of the system size) the following
two particular results:

[ -
w € 1—4:Iulz’ (6)
2 -ojw - azﬁz
wre = E- Q)

Equation (6) applies to the “two-sided” situation,
i.e., one in which the distance of the molecule ex-
cited at £ =0 from either end of the chain is much
larger than the intermolecular separation a,
whereas Eq. (7) is obtained in the “one-sided”
situation wherein the excitation is originally
placed at one of the ends. The difference ap-
pears in the quantity {(4) which equals 4a®lu 2/
a’Z? in the former but 2a®lu{2/a#? in the latter
case. The two-body system involves an extreme
size limit (L =a) of the “one-sided” situation. In
the respective limits @ <« lul/% and a > lul/x,
Eq. (7) reduces to

w =2nlul /b, 1
and
w =871%ul|?/ha. 27)

Equation (2’) is identical to (2) with the corre-
spondence @ =2A€/k and (1') differs from (1) on-
ly by the constant factor 7/2 which arises because
of a peculiarity of the definition (1) and will be
discussed below. The respective limiting values
equal 2V27lul/h and 167%lul?/ak? for the large
two-sided system.

Forster'® compared Egs. (1) and (2) for a typi-
cal case, choosing a spectral parameter A€
=3000 cm™. As shown above, this corresponds
to a choice a =2A€/k =1.799X10* sec™? in our
memory function. In Fig. 1 we compare For-
ster’s pairwise transfer rates!® as a function of
lul (light curves) with the prediction of the pres-
ent theory for an exponential memory [Eq. (7)]
(heavy curve). Note that the latter coincides pre-
cisely with the light curve ¢ in the “R"° region.”
Curves a and b are discussed below. The lower
abscissa scale is essentially the Simpson-Peter-
son? parameter 2lul/Ac.

In the case of an exponential memory and a di-
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FIG. 1. Comparison of Forster’s estimated rates
(light curves and upper and right scales) and the single
function predicted for an exponential memory (heavy
curve and lower and left scales). Curves a, b, and ¢
are Forster’s “strong,” “weak,” and “very weak” cou-
pling cases, respectively. Abscissa: lower, lu|/
3336 where « is in em™! and « is in units of 10"
sec™!; upper, |u| in em=!. Ordinate: leff, w/a, di-
mensionless; 7ight, w in sec™!. The dashed lines are
the “intermediate cases” of Ref. 15, Fig. 3. We stress
that the upper and right scales involve a particular
choice ¢=1.8x10'" sec™!, chosen to correspond with
Fdrster’s value of 3000 cm™ ! for Aec.

polar interaction, u = (const)R~3, one may show
that the exponent in the rate as a function of R
(w~R"™) is given by

dlw (w 1 >
n_dlnR_G(oz 1-e %)" ®)

This function is shown in Fig. 2. It goes smooth-
ly from —6 (small w/a) to — 3 (large w/a) and
one sees that if the exponent could be measured
to within say, +0.5, the transition would appear
to occur within only one decade in the transfer
rate. The result also shows that the term “R™3
transfer” can only mean “fast transfer” if one
means “fast relative to @” and, conversely, “R”°
transfer” can only mean “slow transfer” if one
means “slow relative to @.” The curve [Eq. (8),
Fig. 2] is a universal function of w/a, indepen-
dent of the strength of the dipole-dipole interac-
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FIG. 2. The exponent of R in the transfer rate for
the case of dipolar interaction, as a function of the
transfer rate in units of a. See text, Eq. (8). The in-
flection point is at w/a~0.22.

tion.

The fact that Egs. (1) and (1’) cannot be brought
into complete accord, in contrast to the case of
Eqgs. (2) and (2), is explained by the arbitariness
of the definition of the transfer rate in a two-mol-
ecule system. As we have remarked above, the
probability in the originally unoccupied molecule
never builds up to unity except in the purely co-
herent case and a smaller fraction must there-
fore be employed in a unified definition of the
rate. The exact value of this fraction is arbi-
trary. The application of our large-system defi-
nition to the two-molecule system corresponds
in the purely coherent case (fast transfer) to a
parabolic approximation to the probability of ex-
citation of the second molecule, while Eq. (1) de-
fines the rate as the inverse of a quarter period
of the true probability curve which is sin?(lult/
7). This accounts for the factor 7/2 by which
Eqgs. (1) and (1’) differ. In the two-molecule sys-
tem there is a breakdown of the condition a < L
satisfied in large systems. While our definition
of the transfer rate is therefore not literally ap-
propriate for the two-molecule system the differ-
ence shows up merely as a trivial constant factor
of order unity. Factors of similar origin have
been encountered earlier.%

Forster’s curve b (see Fig. 1) applies to his
“weak” case in which R™® transfer occurs as a
result of strong overlapping of one vibronic ab-
sorption and emission band. As Gueron, Eising-
er, and Schulman!” have noted, this case is suf-
ficiently different from curves a and c that it
should not be compared with them directly. In
the context of the present theory, if the mole-
cules have complicated spectra and it is suspect-
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ed that curve b might apply, one need only include
a more detailed memory function as prescribed
in Ref. 11. Generally, Eq. (4), rather than its
particular form, Eq. (7), should be used, the
curve analogous to the heavy curve in Fig. 1 be-
ing obtained by computing w =1/f "*(a?/{A4)), where
f is the double integral in Eq. (4) taken as a func-
tion of the upper limit on the ¢ integration.

As an example of the application of this formal-
ism we choose the complex of five bacteriochloro-
phyll (BChl) molecules whose spectra have been
studied in detail by Philipson and Sauer.'® The
low-temperature spectrum has a structure re-
vealing an average pairwise interaction strength
lul =125 em™. The value of @ estimated by us-
ing the BChl-a monomer spectrum at room tem-
perature and assuming a Stokes shift comparable
with that observed in bacteriopheophytin® is 2.3
X 10 sec™® (A€~ 3800 cm™). Since lul is essen-
tially a dipolar interaction and is not expected to
be temperature dependent, the above value of lul
persists so that lul/3336a at ordinary tempera-
tures is 0.016, From Figs. 1 and 2 the transfer
rate is found to be w~ 0.020a = 4.8 X10*? sec™*
with an R™>° dependence. So, despite well-re-
solved splitting at low temperatures, the excita-
tions in BChl complexes are not clearcut candi-
dates for “fast” transfer at ordinary tempera-
tures. Even if a two-sided transfer rate is more
appropriate, w=0.037«¢ with an R™>® dependence.
This rough calculation suggests that fluorescence
polarization measurements on the BChl-a com-
plex may well reveal considerable depolarization,
especially in view of the inference by Philipson
and Sauer that the dipoles in the complex are not
necessarily well ordered.

It is not completely clear how a direct measure-
ment of the rates may be made over the whole
range of l#l. However, we have now shown that
one clear connection can be made between the
two traditional limits and we are preparing an
application of the theory to the time-dependence
of fluorescence polarization in two-molecule sys-
tems.
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his comments and Vinita Ghosh for her assis-
tance with computation.
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