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Abstract. While the evolution of the non-linear quantum dimer can be solved exactly in the 
adiabatic limit, only numerical methods and general analytical arguments have been used in 
the non-adiabatic case. We present approximate analytical expressions for the dependence 
of the complete density matrix of the system through an application of an averaging method. 
The method consists of selecting a constant of the motion for the adiabatic case, studying its 
time evolution, and using the results to obtain the evolution of the entire system. 

1. Introduction 

In two recent papers, Kenkre and Wu [l] proposed the following equations for studying 
the evolution of quasiparticles such as electrons or excitons in a two-site system (dimer) 
with strong interaction with vibrations: 

In (1.1)-( 1.4), c1 and c2 are the probability amplitudes for the quasiparticle to be on the 
two sites 1 and 2, Vis the intersite transfer matrix element of the quasiparticle, x1 and 
x2 are the displacements of the two Einstein oscillators with whose vibrations the 
quasiparticle interacts, r is the vibrational relaxation rate, and the coupling strength 
between the quasiparticle and the vibrations is specified by E and x. As has been 
mentioned in [ 11 , (1.1)-( 1.4) are similar to the equations introduced by Scott [2] and 
collaborators in the context of energy transport in a-helix proteins, but differ in that, in 
(1.1)-( 1.4) , the oscillators have no dispersion, possess damping and incorporate a single 
relaxation rate r. In the adiabatic limit, which corresponds to the vibrational relaxation 
rate being infinite (I- + m), (1.1)-( 1.4) yield the discrete non-linear Schrodinger 
equation for a dimer which has been studied extensively by Kenkre and collaborators 

t On leave of absence from the University of Pisa, Italy. 
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[3-61. Those studies dealt with exact solultions [3] and various applications to experi- 
ments [ M I .  Equations (1.1)-( 1.4) have also been adopted by the present authors [7] as 
the starting point for the study of the effect of temperature on self-trapping. In that 
study, (1.1)-( 1.4) have been supplemented by Gaussian white noise terms to represent 
temperature effects. The main result of [7] is that, although no abrupt transition exists 
as a function of temperature, a characteristic temperature does exist, above which the 
localised state is practically destroyed, the temperature dependence of the destruction 
process being Arrhenius in character. 

As in our earlier work [l] ,  we define the following quantities: 

P = P11 - P22 9 = i(P 12 - P21) r = Pl2 + P21 (1.5) 
where p l l ,  p22, p12 and p21 are the density matrix elements (e.g. p12 = c?c2) of the 
quasiparticle. We further define [ 11 

Y = - (E /x ) (x ,  - x2). (1.6) 
to be the difference of the oscillator displacements. Henceforth in this paper we express 
x,  r and l / t  in units of 2V. Then (1.1)-( 1.4) can be rewritten as 

d p l d t  = q (1.7) 
dq ld t  = -p - xry (1.8) 
d r ld t  = xqy 

dy/dt = - r (y  - p). 
(1.9) 

(1.10) 

In [ 13, it has been hoped that analytic solutions of (1.7)-( 1.10) would be available. 
The following is an attempt in that direction. We intend to solve (1.7)-( 1.10) for fast but 
finite vibrational relaxation rates for the following reason. Physically, it is the first-order 
correction of the adiabatic limit, and technically, it allows us to apply a perturbation 
scheme in orders of l / r .  Notice that [ l] ,  for a time scale longer than l / r ,  (1.10) has the 
following approximate solution to order l/r 

(1.11) 

dp/dt  = q (1.12) 

dq/dt  = -p - xrp + (l/T)xqr 

dr /dt  = xqp - (l/r)xq2, 

(1.13) 

(1.14) 

While the evolution of the non-linear quantum dimer can be solved exactly in the 
adiabatic limit (r --;r m), only numerical methods and general analytical arguments have 
been used in the non-adiabatic case. We present an application of the ‘averaging method’ 
[8,9] by selecting a constant of motion for the adiabatic case, studying its time evolution, 
and using that slow variable to obtain approximate expressions for the dependence of 
the complete density matrix of the system. In section 2, we discuss the application in 
detail. We search for a ‘constant of motion’ in the adiabatic limit, and derive the evolution 
equation of that quantity for finite r. In section 3, we solve the equation and obtain the 
expression for the time dependence of the slow variable. We also derive an expression 
for the time dependence of the probability difference p in section 4. A summary is 
presented in section 5 ,  
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2. The averaging method 

Equations (1.12)-(1.14) constitute the starting point of our analysis. Since l/r is a small 
quantity, our strategy is based on a perturbation theory in orders of l/r. The method 
we apply is the so-called averaging method. 

The first step of the averaging method is to search for a slow variable which is a 
constant of the motion in the limit that the small quantity vanishes. The small quantity 
in the present context is l/r in units of x or V.  It is trivial to verify that 

p2 + q2  + r2 = 1 (2.1) 
is a constant of motion. However, this quantity is useless for our purpose because it is a 
constant of the motion for all values of the vibrational relaxation rate r. This corresponds 
to the conservation of the magnitude of a 'spin' rotating in three-dimensional space 
[lo, 111. Another quantity which is a constant of motion only in the adiabatic limit can 
be found in the following way. In the adiabatic limit, the last term of (1.14) vanishes and 
(1.14) can be written as 

4 = (l/xP)(dr/dt). (2.2) 

(x/2)(dp2/dt) = dr/dt  (2.3) 

On substituting (2.2) into (1.12), we get 

and one sees immediately that the sum of r - (x/2)p2 and an arbitrary time-independent 
term is a constant of the motion in the adiabatic limit. We choose the additive term to 
be x/2 + 1/2x and call [7] the constant of the motion E: 

E = r - (x/2)p2 + x/2 + 1/2x. (2.4) 
The particular choice of the additive term makes E vanish in the non-trivial stationary 
state (i.e. whenp # 0) in which r equals -1/x and p = t ( l  - 1/x2)'I2. 

The quantity E evolves in time when the adiabatic limit does not apply, i.e. when 
l/r # 0. Combining (1.12)-( 1.14) and (2.4), we find that the evolution is given by 

dE/d t  = -(l /r)xq2. (2.5) 
It is clear from (2.5) that, if x/T is small, the rate of change of E is small, and that E is a 
slow variable relative t o p ,  q ,  and r .  The fact that p ,  q,  and r are oscillating functions 
suggests that we carry out an average of (2.5) over one period of oscillation [3]. If we 
replace (E), the average of E ,  by E itself, assuming that E is a constant during a period, 
(2.5) gives 

dE/d t  = -(1/r)x(q2). (2.6) 
Among the variablesp, q ,  and r ,  we may use (2.1) and (2.2) to express q2 in terms of 

E and one other variable. We choose that variable to bep .  With this choice, 

42 = -(x/2)2p4 - [ X ( E  - 1/2x - x/2) + i l p 2  + [I - (E - 1/2x - x/2)21 (2.7) 
and the average of q2 reads 

- M E  - 1/2x - x/2> + WP: + P+P- + P 9  
+ [ l  - ( E  - 1/2% - x/2)2] 
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wherep. are the turning points of one oscillation. It can be shown [7] that, in the trapped 
regime 

p r  = [ l  - 1/x2 - 2E/x 2 (2/x)(2E/x)”2]”2 

p ?  = -[1 - 1/x2 - 2E/x & (2/~)(2E/x)’ /*]~/~ 

(2 * 9) 

(2.10) 

or 

depending on at which of the two sites the quasiparticle is trapped. We carry out a similar 
procedure for the ‘free’ regime and obtain 

p z  = *[l - 1/x2 - 2E/x + (2/2)(2E/X)’/2]1/2. (2.11) 

The turning points in the ‘free’ regime are symmetric about p = 0. 

3. Approximate solutions for the slow variable E 

The evolution of the slow variable E is given by (2.6) with (q2) given by (2.8)-(2.11). 
However, exact analytical solutions of (2.6) are difficult to obtain since (q2) in (2.8) is a 
complicated function of E.  A natural procedure that enables us to proceed approxi- 
mately, but analytically, is a polynomial expansion of (q2) about E.  Inspection of figure 
1, in which we plot (q2) numerically as a function of E (full curves), shows that (q2) may 
be approximated by a linear function of E for the trapped regime and a quadratic one in 
the ‘free’ regime, provided that x is not negligibly small. It can be shown [7] that, in the 
trapped regime, (q2) can be approximated by 

(q2> = (4/3x)E (3.1) 

where 4/32 is the linear coefficient in an expansion of (q2) in powers of E near the non- 
trivialstationarystates, i.e. near E = 0. In the ‘free’regime, weexpand(q2)asaquadratic 
expression for E around Eo, the highest possible value of E ,  i.e. the one obtained by 
settingp = 1 and r = 0 in (2.4) 

Eo = 1/2x. (3.2) 

( q 2 )  = A + B(E - Eo) + C(E - EO)* (3.3) 

A = $( 1 - x2/5) (3.4) 

B = $x (3.5) 

C = a(l + 7x2/10). (3.6) 

That expansion, namely, 

has the coefficients A ,  B and C given by 

In figure 1 we present (q2) in this combined linear and quadratic approximation (broken 
curves) compared with the exact numerical results from (2.8) (full curves). We see that 
this approximation is remarkably good for high non-linearities (x > 2), i.e. the trapping 
regime (figure l(a)). The deviation of the approximate result from the exact one is 
apparent for small non-linearities (x < l ) ,  i.e. the free regime (figure l(b)). For 
2 > x > 1 (figure l(c)), the agreement is fairly good except near the transition. That (q2)  
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Figure 1. The quantity (q2)  plotted as a 
function of the slow variable E.  The full 
curves are the exact numerical results from 
(2.8), which lead to the approximation by 
a linear fit in the trapped regime and a 
quadratic fit in the free regime. These fits 
are plotted as broken curves. Values of the 
non-linearitiesare: ( a ) x  = 2 .8 , (b )x  = 0.8 
and (c) ,y = 1.8. In (c), (q2) = 0 at the tran- 
sition between the trapped and free 
regimes. 

drops to 0 sharply at the transition is because of the fact that the transition point 
represents an unstable stationary state. The value of E at this transition point, namely 
E,, is found from (2.5) with p = 0 and r = - 1, 

E,, = 1/2x + x / 2  - 1. (3.7) 

The approximate solution of (2.6) with the linear fit (3.1) or the quadratic fit (3.2) is 
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straightforward. There are three cases depending on the initial values of E and the non- 
linearities. The first is for x < 1. In this case, only ‘free’ motion is allowed for all initial 
values of E.  Using (3.2), we have 

E(t)  = B/(2C) + (D/2C) tanh{Dxt/2r - 2 ln[(D - B + 2CE1)/(D + B - 2CE,)]} 

where 
(3.8) 

(3 9) D = (B2 + 4AC)”*. 

A,  B and Care  defined in (3.3)-(33, and E, is the initial value of E. The second case is 
for x > 2 or x > 1 but E, < E,, where the quasiparticle is trapped at the beginning and, 
therefore, will always be trapped. In this case, (3.1) is the appropriate fit and the solution 
is 

E(t) = ~,e-(413r)f, (3.10) 

The third case is for 1 < x < 2 and E, > Et,. In this case, the quasiparticle undergoes a 
free-to-trapped transition when the value of E crosses Et,. The solution then is (3.8) 
before the transition and (3.10) after the transition: 

E(t)  = 2C+ (D/2C) tanh{Dxt/2r - 2 ln[(D - B + 2CE1)/(D + B - 2CE,)]} 

for t  < tt, (3. l l a )  

E(t) = E,, exp[(4/3r)(t - t t r > I  

for t > tt,. (3. l l b )  

The quantity ttr appearing in (3.11) is the time for the free-to-trapping transition to 
take place. One of the results of this paper is the following explicit expression for this 
trapping time: 

it, = (2r/xD){ln[(D - B + 2CEi)/(D + B - 2CEi)] 

+ ln[(D - B + 2CEt,)/(D + B - 2CEt,)]} (3.12) 

The initial value of E ,  namely Ei, is obtained from (2.5) in terms of initial values of 
p and r respectively. In many physical experiments, the derivative of p at t = 0 is 0; 
thus qo = 0. According to (2. 1), we then have ro = 2 (1 - p i )  112, and 

(3.13) 

where the + and - signs on the right hand side correspond to the in-phase and out-of- 
phase motion, respectively [4]. 

In figure 2, we present the time dependence of the approximate analytical solutions 
of the quantity E(t) for the same non-linearities as in figure 1 where the nonlinear 
parameters are, respectively: (a) x = 2.8, (b) x = 0.8 and (c) x = 1.8, all in units of 2 V. 
The initial condition of the quasiparticle is taken to be localised, that is p o  = 1 and ro = 
0. The extent to which the numerical results (full curves) and the analytical solutions 
agree in figure 2 is consistent with that in figure 1. In figure 3, we plot the quantity ttJr 
as a function of the non-linearity x for 1 < x < 2 for initial localised conditions. Note 
that the dependence of tt, on x appears to be essentially linear. The meaning of the fact 
that the transition time tt, vanishes at x = 2 corresponds to the fact that for x 2 2, the 
quasiparticle finds itself restricted to one side of the double-well potential for all times. 
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E l t i  

0 

Figure 2. Comparison of the approximate 
(broken curves) but analytical time evol- 
ution of the slow variable E with ‘exact’ 
(full curves) numerical solutions. The par- 
ameters are the same as in figure 1. Time 
is in the units of 1/2V. 

2 v t  

4. Time evolution of the probability difference 

There are two time scales in the averaging method applied above: the slow time scale of 
E and the fast time scale of p ,  q and r .  When, as in sections3 above, one averages over 
the fast quantities in order to obtain a closed equation for E ,  one loses information about 
fast quantities. However, in most cases, the latter are directly related to experimental 
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Figure 3. Transition time (in units of r/ 
(2V)’) for the free-to-trapping transition 
to take place given by (3.12) plotted as a 
function of the non-linearity x (in units of 
2V) showing a quasi-linear dependence. 

observables. For instance, in the present example, the Fourier transform of the time 
evolution of the probability differencep is essentially the scattering spectrum of interest 
in neutron scattering experiments [4(a)], while the quantity r determines fluorescence 
depolarisation [4(b)]. In this section, we obtain an approximate solution for such fast 
quantities, specifically for the probability difference p .  For the sake of simplicity, we 
restrict our analysis to localised initial conditions. 

(dp/dt)2= - ( ~ / 2 ) ~ p ~  -x(E(t)+1/2x-x/2)p2 +[1-(E(t)-  1/231-~/2)*]. 

Equation (4.1) can also be written as 

for E > E,,, wherep,, are the roots of the right-hand side of (4.1) and are given by 

We square (1.12) and combine with (2.7) to obtain 

(4.1) 

(dP/dt)2 = (x /2) (d+ - P 2 > ( P 2  + p : - >  

p ? - ( t )  = * (1 - 1/x2 - 2 E ( t ) / ~ )  + ( 2 / ~ ) ( 2 E ( t ) / ~ ) ” ~ .  

(dP/dt)2 = (x/2)(P:+ - P 2 > ( P 2  - P3-> 
pi&) = (1 - 1/x2 - 2E(t)/x) * (2/X>(2E(t>/x)”2. 

(4.2) 

(4.3) 

(4 * 4) 
(4.5) 

For E < E,,, we rewrite (4.1) as 

In the adiabatic limit, E is independent of time, (4.1) is integrable, and p can be 
expressed exactly in terms of Jacobi elliptical functions [3]. Although in the present case 
E does depend on time, it is a slow quantity compared withp, q and r .  We may therefore 
integrate (4.2) or (4.41, taking E as a constant during the integration, and obtain the 
following solutions of elliptical functions expressed as an expansion of Fourier series. 
For E > E,,, the solution is a cn elliptical function [12] 

qT+’/2 

P ( 4  =P1+(2dk lK(k l ) )  (1 +q:”+l)  cos[@+ l>(xQ1t/2+ W ) ) l  (4.6) 

and for E < Etr, it is a dn elliptical function, 

cos[2n(xQ2t/2+ Q2(i))l) (4.7) 
4; 

P ( 4  = P2+ (n/(2K(k2)) + [27G/K(k2)1 E 
where K it the complete elliptical integral of the first kind. In (4.6) and (4.7), certain 
quantities are related. For instance, 
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(4 * 8) qi = exp( - nGK(kI ) / K ( k i ) )  i =  1 , 2  

52i  = nwi/2L(ki) i =  1,2 

ki2 + k;  = 1 i =  1 , 2  
(4.9) 

(4.10) 

and ki and wi are functions ofpki ( i  = 1,2)  through the following relations: 

w1 = (p?+(t)  + P:-( t ) )1’2  

kl = P1+ <t>/(p:+ (4 + P:-  ( t>)”2  

(4.11) 

(4.12) 

(4.13) 

(4.14) 

When (4.6)-(4.14) are used as solutions in the adiabatic limit, E is a constant. The pi* 
(i = 1,2)  are also constant. In the non-adiabatic case with small l / r ,  we present (4.6) and 
(4.7) as our approximate but analytical solutions for p of (1.12)-( 1.14). The difference 
between the present solution and the ones of the adiabatic limit is that now E becomes 
a slowly varying quantity evolving in time according to (3.8) or (3.10) depending on 
whether E < E,, or E > E,, with Ei = Eo = 1/2x for localised initial conditions. The 
quantitiespi,, wi, and ki (i  = 1,2)  also become time varying because of the dependence 
on E.  

To complete our solutions, we now evaluate the phase terms Q1(t) and Q 2 ( t ) .  We 
obtain them by substituting (4.6) and (4.7) into (4.1) and equating the terms of the same 
order in l/r. The procedure is tedious but straightforward. For E < E,, 

@ 1 ( 4  = (nt2/K(k1)){(x/WA + B ( E ( 4  -Eo) + C(E(t) - 

x U1/(2xE(t))”l“ - (w,/K(k,))[(W1) - k’2K(k1))/klk;21 

X {[1/(2XE(t))1’2 - lI/wiPi+X - Pi+ /Cw?(2XE(t))3/4])D 

where A ,  B and Care  given in (3.4)-(3.6), Eo = 1/231, E(t) follows (3.8) with Ei = E,, 
and % is the complete elliptical integral of the second kind. For E > E,,, 

(4.15) 

@ 2  (4 = ( J G t 2 / W *  >)(4E(t)/3r)u[l/(~2+ x)1[1/(2xE(t)) 1’2 - 11 

- ( 0 2 / W 2 ) ) [ ( 4 k 2 )  - k”(k2>)/k2k~211(l/[P2+ (2m))3’41 

- ( w 2 / ~ ~ i + ) [ l / ( 2 ~ ~ ( t ) ) 1 ’ 2  - 111n (4.16) 
where E(t) follows (3.10) with Ei = Eo = 1/231. 

Comparisons of the approximate solutions (4.6) and (4.7) and the numerical results 
obtained by summing 100 terms in (4.6) and (4.7) are presented in figure 4 for three 
values of x: ( a )  x = 2.8, (b )  x = 0.8 and (c) x = 1.8. 

5. Summary 

We have investigated the non-adiabatic dimer in the case of fast but finite vibrational 
relaxation through the application of an averaging method. We studied a slowly varying 
quantity E ,  which is a constant of motion in the adiabatic limit. The definition of E is in 
(2.4) and the approximate time evolution we found is in (3.8)-(3.11), obtained using 
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Figure4. The probability differencep plot- 
ted as a function of time, showing both 
‘exact’ numerical solutions (full curves) 
and the approximate but analytical results 
(broken curves) of this paper. Analytical 
solutions are good for 2Vt < (r/x)’’’. The 
rate r (in units of 2V) is taken to be 200 
and other parameters are as in figures 1 
and 2. 

simple polynomial fits of (q2)  (figure 1). The time dependence we obtained is shown in 
figure 2. For intermediate non-linearities, the evolution of the quasiparticle undergoes 
a ‘free’-to-trapping transition. We have derived an expression, (3.12), for the time taken 
for this transition to take place. The time dependence for the probability difference is 
given in (4.6) and (4.7) and is shown in figure 4. 

One of the important characteristics of our method is the presence of the phase terms 
Ql(t) and Q2(t) in (4.6) and (4.7). Phase terms are unnecessary in applications of the 
averaging method to other non-linear problems such as the von del Pol oscillator [9], 
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since in the latter case, the zero-order solution (which corresponds to the adiabatic 
solution in the present problem) is a harmonic oscillation: the period of oscillation does 
not change as one varies the amplitude. Since the zero-order solution in our case is an 
elliptical function, the treatment of phases is essential to our problem. We mention in 
passing that Qi(t) in (4.14) is the first-order phase correction and must be small compared 
with unity. Since dE/dt is of the order of %/I‘ and aj(t) is proportional to t2,  it is clear 
that the approximate solution of p in (4.3) and (4.4) is valid for 2Vt < (T/x)”2. The 
approximation could be improved by considering higher order corrections. 
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