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Generalized master equations with nonlinear memory functions describing quasiparticle trans-
port on lattices are derived explicitly from the discrete nonlinear Schrddinger equation through the
application of diagonalizing projection operators. Exact results are presented for dimers, and an ap-
proximation scheme is developed for extended systems such as an infinite chain, which treats the
nonlinearity exactly and the intersite transfer perturbatively. An apparent connection to the Toda
lattice is pointed out. The exact results presented for the dimer include an explicit evaluation of the
initial (driving) term in the generalized master equation.

I. INTRODUCTION

One encounters the discrete nonlinear Schroédinger
equation in the context of numerous phenomena in vari-
ous fields of physics.! 7! The equation may be written, in
its simplest form, as .

dc,, (1)

dt (1.1

=—iV(c,+1FCm—1)Fixle, P,

Here c,, is the amplitude for the system to be in the state
|m ) which is localized at the mth site in the one-
dimensional crystal considered here, V is the interstate
matrix element [assumed ‘“nearest neighbor” in (1.1)]
describing the evolution among the states |m ), and Y is
the nonlinearity parameter of special importance to the
present investigation. The matrix element V is propor-
tional to the bandwidth of the bare electron or exciton,
and the nonlinearity Y is nothing other than the energy
lowering due to polaronic effects, often written as a sum
of the products of the vibrational energies of the partici-
pating modes and the square of their coupling constants
with the electron or exciton.

Solutions to Eq. (1.1) are not known in general. Some
of the solutions are known in the continuum limit® and
the entire evolution is known analytically’ ® for a two-
site system-—the dimer—but one has had to rely on nu-
merical methods!® to investigate excitation transport
which obeys (1.1) in an extended system. In the present
paper we shall show that, starting from (1.1), it is possible
to derive a generalized master equation (GME) governing
the evolution of the probabilities of site occupation, that
the memory functions appearing in the equation are ex-
plicitly nonlinear in the probabilities, that an approxima-
tion scheme can be developed on the basis of the GME
which can address nonlinearity to all orders but intersite
transfer to small orders, and that a curious relation ap-
pears to exist between the approximated GME and the
Toda lattice equation.!! As a preliminary to the deriva-
tion of the GME we present the Liouville—~Von Neumann
equation obeyed by the density matrix p,,,. Equation
(1.1) and its complex conjugate can be combined to give’
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dp .
d’:" :“lV(Pm +1n +pm—1n _pmn+l—Pmn—1)

HiX(Pmm —Pun P mn (1.2)

provided Y is assumed real. As we have pointed out else-
where,>% a linear chain with statically varying site ener-
gies (as in a disordered chain) would obey (1.2) with the
replacement of the second term iX(p,,,, —Pnn )Pmn Y the
energy mismatch term—i(E,, —E, )p,,,, where E,, is the
site energy at m. The energy lowering —Xp,,, Which
equals the product of y and the probability of occupation
of site m is clear in (1.2).

II. THE NONLINEAR
GENERALIZED MASTER EQUATION

Unlike the standard Liouville~Von Neumann equation
which is a linear equation, (1.2) is nonlinear. It would,
therefore, appear that linear techniques such as those in-
volving the diagonalizing projection operators of Zwan-
zig'? would not be useful in its analysis. We shall show,
however, that, this is not true: despite its nonlinearity,
(1.2) can indeed be approached profitably with the projec-
tion technique. We rewrite (1.2) in the symbolic form

dp _
dt

where the “Liouville” operators L, and L, are defined
through

—iLyp+iL,p=—iLp 2.1

L,0=[V,0], (2.2)

(L,0), =X P ram —Prun )Orn 2.3)

for any operator O. If, in the manner of Zwanzig, we ap-
ply diagonalizing projection operators P and 1—P to (2.1)
via the definition

(PO) sy = O Sy 2.4)

we obtain'? the two equations
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40" — _ipry—iPLp 2.5)

dt

4p” — _j(1—P)Lp"—i(1—P)Lp' . (2.6)

dt
The definition of L, that we have introduced through
(2.3) has been constructed specifically to allow the appli-
cation of linear projection operators to the nonlinear den-
sity matrix equation (1.2). A natural alternative to (2.3)
could have been

(L0) s =X(Opy = 0 )0, - 2.7)

Such a choice would make both (2.5) and (2.6) nonlinear.
The definition we have introduced, however, has the
consequence that, while (2.5) is a nonlinear equation for
p’, the diagonal part of the density matrix, (2.6), is a
linear equation for p”’, the off-diagonal part. This is so
because (2.3) shows that the action of L, on the off-
diagonal part p’’ involves multiplication by elements of
the diagonal part of the density matrix. We can thus
solve (2.6) and substitute in (2.5) through standard
methods of linear differential equations exactly as in the
completely linear cases of Zwanzig and others.!>”!*> The
result is the well-known equation

%det—’—=—iPLp‘—PL fotds [exp [—ifstdz(l—P)L(z) ] ]

X(1—=P)L (s)p’(s) (2.8)

valid for the initial random-phase condition that p is ini-
tially diagonal. If such a condition does not apply, (2.8)
contains an additional driving term.'>!® We shall not be
concerned with non-random-phase initial conditions in
the main body of the present paper. In the Appendix we
shall evaluate the initial term and discuss its conse-
quences for the two-site system. Standard arguments
show that the first term on the right-hand side of (2.8)
vanishes identically, and (2.8) can be written in the GME
form:
dP, (t

%: [ as 3 (W (1518, (5)= W ()P (5)]

2.9)

where the nonlinear memory functions W,,, (t,s) are ob-
tained from the elements of the tetradic

PL [ ds

exp

—i ['dz(1—P)L(2)

(1—P)L (s)p'(s) .

III. EXACT REDUCTION FOR THE DIMER
AND RECOVERY OF KNOWN RESULTS

The disentangling of the projection operators in (2.8)
can be done without approximation when the system un-
der consideration is a dimer. Equation (2.3) shows that,
when acting on the diagonal part p' of the density matrix,
L, produces a vanishing result. This has the conse-
quence that

( 1‘(1—"P)L (S)PI(S)|2):— V[pll(s)"'pzz(s)] . (3.1)
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Arbitrary powers n of the operator (1—P)L (z) acting on
the right-hand side of (3.1) yield the following result:

(1|/[(1=P)L(2)]"(1—P)L (s)p'(5)]2)
=(—1""Y"Vp11(s)—pp()1lp11(2) —pyp(2)]" .
(3.2)

The series produced by the action of exp[—i f ‘dz (1
—P)L(z)] on the right-hand side of (3.1) can thus be
summed explicitly to yield a sum of two terms which are
respectively proportional to the cosine and the sine of the
expression f:dz X[p11(z)—pyy(z)]. The sine term van-
ishes as a consequence of the action of PL (¢) on this ex-
pression. The final result is the following set of coupled
equations of motion for the probabilities p,;(?) and p,,(¢)
which describe the site occupation at the sites 1 and 2 of
the dimer:

dpy(2)
— =2V [ dslpals)—pui(s)]

xCos[f‘dzx[pn(z>—p“(z)] , (3.3)
dpyy(t)
———=20 [ ds(py(s)—pn(s)]

X cos [ftdz)([pzz(z)—p”(z)] . (34

‘Equations (3.3) and (3.4) constitute the exact nonlinear
generalized master equation for the dimer. They are
rather different in appearance from those describing the
exact evolution of the dimer probabilities derived by
Kenkre and Campbell.’> To show their equivalence to the
result of Ref. 5, we subtract (3.4) from (3.3) to obtain the
closed equation of evolution for the difference p of the
probabilities P, —P,: "

de(t) N t —
ot +4V fodsp(s)cos stdzp(z) 0. (3.5
We now define a new quantity £(z) through
t
§(t)—f0dsp(s) . (3.6)

Equation (3.5) is then reduced to a second-order
differential equation for &(¢):

2
%ft‘zﬁuwz/x)sin[xg(z)]:o . (3.7)

Equation (3.7) is the well-known pendulum equation, has
appeared recently in the work of Cruzeiro-Hansson
et al.,'” and can be solved immediately to yield

E()=(2/x)sin " [sn(xt/2|4V /x)] .

Finally, the differentiation of (3.8) with respect to ¢ gives

(3.8)

p(t)=dE/dt =cn(2Vt|x /4V) (3.9)
if p(0)=1 and (dp /dt);=0. In Egs. (3.8) and (3.9) the sn
and cn are the Jacobian sine and cosine elliptic functions
and the factor following | in their expressions is their el-
liptic parameter. Equation (3.9) is the exact dimer result
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derived in Ref. 5. It is also possible, if desired, to show
that (3.3) leads directly to the evolution equation

2
H:A —B 3
dtz p I
where the constants 4 and B are given by initial condi-
tions (as in Refs. 5-8).

IV. APPROXIMATE MEMORY FUNCTIONS
FOR THE CHAIN

(3.10)

While the exact evaluation of the memory functions in
(2.9) is possible only for the dimer, an approximation
scheme can be developed for the chain. Since our interest
is primarily in the nonlinearity, it is important that we
not treat it perturbatively. On the other hand, the site-
to-site transfer may be considered to be weak enough to
be analyzed via an approximation. We thus apply to (2.8)
the standard weak-coupling approximation wherein L, is
taken to have a small effect compared to the effect of the
nonlinearity. We first note that the tetradic shown at the
end of Sec. II can be written as

PLy [ O‘ds

exp

—i ['dz(1—P)L(2)

L,p'(s),

where the first and the last L have been written without
approximation as L. This is simply a consequence of the
nature of P and of L,. We now invoke the weak-
coupling approximation: the action of L, is taken to be
small (in the sense of a perturbation) with respect to that
of L. The lowest nonvanishing term in an expansion of
the tetradic in powers of L, is then

+i a2y | |Lyp(s) .

PL, f otds exp

In writing the above we have made use of the fact that L,
acting on any operator produces an operator which is
completely off diagonal in the representation of m, n,
etc. The expansion of the exponential in powers of
+i [!dz L (z) and the use of the definition of L, gives

[ {exp [-HfstdzLX(z) o

mn

= |exp [‘-H f:dz X[Pmm (2)—ppn(2)] ]Om,, .
(4.1)
It is straightforward to use (4.1) in (2.8) to obtain
APnlt) _ [lds 3 (W, (1,5)P, ()= W,,, (1,5)P,, (5)] ,
dt o <
(2.9)
the nonlinear memory functions being given by
W (1,8)=2VH8,, 418 —1)
X cos [x Jlazlp, =P, ]| . @2

The properties of the projection and Liouville operators
which allow the exact evaluation of the nonlinear
memory functions for the dimer and the approximate
evaluation for the extended system given above are simi-
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lar to those used by one of the present authors in the ex-
act evaluation'® of the memory functions from a stochas-
tic Liouville equation. The latter is the same as (2.1) but
with (2.3) replaced by

(L,0),, =a(1=8,,,)0,, - 4.3)

In the series expansion of the tetradic mentioned above,
(1—=P)L, and (1—P)L), commute for the case of Ref. 18

but not in the present case. The primary difference is
that successive powers of (1—P)L, introduce simply
multiplicative powers of the ¢ number « in the case of the
stochastic Liouville equation treated in Ref. 18 but prod-
ucts of different quantities in the case of the nonlinear
Liouville equation considered here. The result is that, in
the present case, an exact solution is possible through the
above methods for the two-state system but not for sys-
tems of arbitrary size.

Equation (4.2) along with (2.9) is the nonlinear general-
ized master equation in the weak-coupling approximation
for the intersite transfer. The approximation inherent in
(4.2) is of a weak-coupling nature in ¥ and not in the non-
linearity )}. The latter is taken to infinite order and the
former to the lowest nonvanishing order. The approxi-
mation is exact for the case of a two-site chain as we have
demonstrated in Sec. III. For extended systems it inher-
its the features of its linear counterpart. It is well
known!>!® that the weak-coupling memory functions in
the linear case produce negative probabilities but yield
the exact mean-square displacement or velocity auto-
correlation function. Thus, while calculations of proba-
bilities or related quantities with the weak-coupling ap-
proximation must be undertaken with care, it is well suit-
ed to the calculation of moments of probability, mean-
square displacements, velocity correlation functions,
diffusion constants, and effective transfer rates.

In Fig. 1 we compare the mean-square displacements

800.0

Mean Square Displacement
) 400.0
!

0.0 10.0 26.0 ' 30.0 40.0
2Vt

FIG. 1. The mean-square displacement (arbitrary units) plot-
ted as a function of time in units of 1/2¥ for various values of
the nonlinearity ratio y/4V: (a) 0.5, (b) 1.25, and (c) 2. The
solid lines represent the exact evolution while the dashed lines
are obtained from solutions of the weak-coupling nonlinear gen-
eralized master equation.
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Transfer Rate

FIG. 2. The (normalized) transfer rate, defined as the re-
ciprocal of the time taken for the mean-square displacement of
an initially site-localized particle to attain the value a?, where a
is the lattice constant, plotted as a function of the nonlinearity.
The qualitative features of the exact solution (solid line) are
reproduced by the solution of the weak-coupling generalized
master equation (dashed line) and the change from ‘“free” to
“self-trapped” behavior (large to small values of the rate) is seen
clearly.

as given by the GME (2.9) through our approximation
(4.2) for the nonlinear memory functions to the exact re-
sult from (1.1). There are obtained numerically. We find
that the qualitative behavior of the time dependence ap-
pears quite similar in the two cases and that the
difference is large for values of the nonlinearity Y near the
transition from free to self-trapped motion. In order to
examine the transition more carefully, we define a
transfer rate®® as the reciprocal of the time taken for the
mean-square displacement to change from the value 0 to
a?, where a is the intersite distance (lattice constant) and
plot the transfer rate (see Fig. 2) as a function of the non-
linearity. The transfer rate we have defined is a measure
of how quickly the quasiparticle moves to its neighboring
site from the site of initial localization. The comparison
of the exact and the approximate results shows that the
latter corresponds to motion which is faster than actual,
that the difference of the two results is largest near the
transition region, and, what is most important, that the
qualitative features of the rate, including the transition,
are preserved under the approximation.

V. CONCLUDING REMARKS

The contributions of this paper are an exact derivation
of a nonlinear generalized mater equation starting from
the nonlinear Schrédinger equation, an exact evaluation
of the nonlinear memory functions (and of the initial con-
dition term for arbitrary initial conditions) in the case of
the dimer, and an approximate evaluation of the memory
functions in the case of an extended system such as chain
or higher-dimensional crystal. These include Egs. (2.9),
(3.3), (3.4), and (4.2), and (5.5) and (5.6). We have shown
that an application of the linear projection operators to
the nonlinear Von Neumann equation is made feasible by
a formal linearity of the Zwanzig projected equation for
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the off-diagonal part of the density matrix. In our exact
evaluation of the memory functions we have found that
they have the standard form!>"3

W, (t,5)=2V>cos {ftdz(Em —E,)) |, (5.1)
s

the site energies E,, and E, being, however, proportional

to the probabilities themselves as a result of the non-

linearity of the evolution equation. Previous dimer work

of Brown et al. has also resulted in nonlinear memory

functions similar to ours.*

The approximation scheme that we have developed for
the calculation of the memory functions in extended sys-
tems treats the nonlinearity exactly but the intersite
transfer to small order. It is thus applicable to the
description of transport of quasiparticles in ‘“‘narrow-
band” materials. The resulting equation has not yet al-
lowed an analytic solution. But we have seen that it is
capable of describing the primary qualitative features of
the motion, in particular the self-trapping transition. It
is hoped that analytic work will be facilitated by the
weak-coupling memory function in future investigations.

Both the GME’s, the exact one for the dimer, and the
approximate one for the extended systems, find particular
use in the study of the interplay of randomness with non-
linearity. The nonlinearity parameter Y depends for its
value on the magnitude of the interaction of the moving
particles with the vibrations of the lattice and on the fre-
quencies of the vibrations. These frequencies and the
coupling constants could vary from site to site and be
therefore regarded as random parameters. The non-
linearity parameter Y would thus itself be a random quan-
tity, the situation being analogous to inhomogeneous
broadening of spectral linewidths or dephasing of spins in
nuclear magnetic resonance experiments. A detailed
theory of the effects of the interplay of such randomness
with nonlinearity, particularly in dimers, forms the con-
tent of a forthcoming publication.?! Here we would like
to anticipate the results of that discussion and show that
the introduction of randomness into the nonlinear GME
can make the latter remarkably similar in appearance to
the equation of evolution for the Toda lattice!! in a non-
linear chain.

Assume that, in our system, randomness may be de-
scribed by considering an ensemble of members, each
with a specific value of ), in such a way that the evolu-
tion is described by the average (over the ensemble) of the
memory functions:

W (1,5)= [ dx p(XOW,, (1,5, %) (5.2)
where We is the effective memory function, plx) is the
distribution function of the nonlinearity parameter Y, and
W,..(t,5,X) is given by (4.2). It is clear then that for a
distribution function which is a Lorentzian of width «,
the effective memory function W*F has an exponential
dependence on the argument f;dz[Pm(z)—P,,(z)]. As
an extension of the dimer definition (3.6) to the chain, we
define the quantities

En(D= [ dz P,,(2) (5.3)
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and obtain, at once, the generalization of the evolution
equation (3.7) applicable to the chain:

d’€,,
dt?

=(wV?/a)exp(—al&,, — &, _1])

—exp(“a]§m+l—§ml)] . (5.4)

Equation (5.4) is remarkably similar to the evolution
equation for the Toda lattice, which is

d’¢,,
5 =const X fexpl ~al§ —&p —1)]

—exp[_a(§m+l—§m )]} > (55)

the only difference between (5.4) and (5.5) being that the
absolute values of the differences of &, at neighboring
sites appear in the former while their actual values ap-
pear in the latter.

Investigations are under way on exploring the
significance of this connection as well as on developing
approximate analytic solutions of the weak-coupling
GME, extensions of the perturbation to higher orders in
the intersite transfer, and exact evaluation of the memory
functions for small systems larger than a dimer.

APPENDIX

The generalized master equation which we derived in
Sec. III was obtained under the assumption of initial ran-
dom phases. In this appendix we present the complete
GME for arbitrary initial conditions in the case of the
two-site system. The general form of the GME obtained
through the application of diagonalizing projection
operators as shown in Sec. II is

o’ _pp fo'ds

dt €xXp

—i ['dz(1—P)L(2)

X(1=P)L(s)p'(s)+1(t) . (A1)

Equation (A1) is an exact consequence of (2.1). It differs
from (2.8) through the presence of the driving term I (z).
The term vanishes under the initial random phase or lo-
calized condition [for which (1—P)p(0)=0, or more gen-
erally'® whenever L (1— P)p(0)=0], allowing the recovery
of (2.8) from (A1l). Generally, the initial term I(t) is
given by

1 (t)=—IiPL |exp

~i [ds(1=PILs) | [(1-Pp(0) .

(A2)

We expand the exponential in (A2) and notice that, for a
dimer, (1—P)L,(1—P) acting on any operator produces
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a vanishing result. This allows the replacement of L by
L, in the exponential in (A2). On carrying out the action
of the series on (1—P)p(0) explicitly, we obtain the com-
plete GME:

(D)

—_—fotds[‘wu(t,s)Pz(s)—Wﬂ(t,s)Pl(s)]+I,(t) ,

dt
(A3)
4P {1 = ftds[‘Wzl(t,s)P1(S)—le(t’s>P2(S)]+Iz(t) ’
dt 0

(A4)
The memories W,,,(t,5) have been evaluated in Sec. II:

“le(t,S)=“W21(t,S)

=2V2c0s [Xf‘dz[P,(z)-qu)] (AS)
s
Introducing the notation
r=(pntpyn), ¢=ilpy—pu), (A6)

recalling that p =P; —P,, and using the evaluation de-
tailed above, we find the driving terms given by

I,(t)=—"Vrysin [)(fotdzp(z) +gqycos [)(fotdzp(z)} ,
(A7)
—qocos [)(foldzp(z)] .

(A8)

I,(t)=+Vrysin [)(fotdzp (2)

Equations (A3) and (A4), with the memories and the driv-
ing terms given by (A5)-(AS8), constitute the exact and
complete probability evolution in the quantum nonlinear
dimer for arbitrary initial conditions.

The definition of the quantity £(¢) through

é‘(t):fotdsp(s):fotds[Pl(s)—Pz(s)] (3.6")

converts the full GME into a second-order differential
equation for &:

d%e . _
;ﬁ—%-M sin(y§)— N cos(x£)=0,

M =(4V?*/x)+2Vr,, N=2Vq, .

(A9)

(A10)

Equation (A9), which is the generalization of (3.7) valid
for arbitrary initial conditions, can be solved explicitly
for £ and can also be used through & potentials for a
direct study of the dimer transitions reported earlier.>?
The details will be presented elsewhere.
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