Abstracts

A survey of dynamical decoupling sequences on a programmable superconducting quantum computer

Presenting Author: Nicholas Ezzell, University of Southern California
Contributing Author(s): Bibek Pokharel, Daniel Lidar

Dynamical decoupling (DD) is the judicious placement of control pulses to decouple a quantum system from its environment without the need for feedback. Error-suppression through DD sequences is well suited for noisy intermediate-scale quantum (NISQ) era quantum computers (QCs) due to its low resource overhead. In this work we update the status of previous DD surveys in light of recent advancements with cloud-based superconducting qubit devices. In particular, we use an IBM cloud QC with additional control of input pulses through the OpenPulse API. These additional controls allow us to implement certain robust and non-uniformly spaced sequences which--to our knowledge--have not been tested on cloud-based QCs. We use our experimental results to (1) find the best performing DD sequence and (2) test predictions from DD theory. For example, we address the effect of finite-pulse width errors, concatenation depth, and delay duration between pulses on DD performance. *This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0020347.

(Session 5 : Thursday from 12:00pm-2:00 pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Associate Professor
amiyake@unm.edu

SQuInT Co-Organizer
Brian Smith, Associate Professor
bjsmith@uoregon.edu

SQuInT Local Organizers
Philip Blocher, Postdoc
Pablo Poggi, Research Assistant Professor
Tzula Propp, Postdoc
Jun Takahashi, Postdoc
Cunlu Zhou, Postdoc

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director
ideutsch@unm.edu

Tweet About SQuInT 2021!