Abstracts

Quantum algorithm for time-dependent Hamiltonian simulation by permutation expansion

Presenting Author: Yi-Hsiang Chen, University of Southern California
Contributing Author(s): Amir Kalev, Itay Hen

We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians. Our method involves expanding the interaction-picture Hamiltonian as a sum of generalized permutations, which leads to an integral-free Dyson series of the time-evolution operator. Under this representation, we perform a quantum simulation for the time-evolution operator by means of the linear combination of unitaries technique. We optimize the time steps of the evolution based on the Hamiltonian's dynamical characteristics, leading to a gate count that scales with an L1-norm-like scaling with respect only to the norm of the interaction Hamiltonian, rather than that of the total Hamiltonian. We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies, implying its advantage for systems with highly oscillating components, and for time-decaying systems the cost does not scale with the total evolution time asymptotically. In addition, our algorithm retains the near optimal log(1/ε)/ log log(1/ε) scaling with simulation error ε.

Read this article online: https://arxiv.org/abs/2103.15334

(Session 5 : Thursday from 12:00pm-2:00 pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Associate Professor
amiyake@unm.edu

SQuInT Co-Organizer
Brian Smith, Associate Professor
bjsmith@uoregon.edu

SQuInT Local Organizers
Philip Blocher, Postdoc
Pablo Poggi, Research Assistant Professor
Tzula Propp, Postdoc
Jun Takahashi, Postdoc
Cunlu Zhou, Postdoc

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director
ideutsch@unm.edu

Tweet About SQuInT 2021!