Quantum control for quantum algorithm design

Presenting Author: Birgitta Whaley, University of California, Berkeley

Optimization is central to the explicit construction of many quantum algorithms. It plays a particularly important role in quantum algorithms characterized by heuristics, such as the Quantum Approximate Optimization Algorithm (QAOA) and hybrid quantum-classical algorithms, such as the variational quantum eigensolver approach to electronic structure calculations. It is also important in development of efficient quantum algorithms for quantum simulations. I shall describe the use of techniques from quantum control and optimization to enable co-design of quantum algorithms, presenting examples of robust design of QAOA protocols and explicit construction of quantum signal processing (QSP) protocols for Hamiltonian simulation and linear algebra.

(Session 7 : Sunday from 10:15am - 11:00am)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Co-Organizer
Brian Smith, Associate Professor UO

SQuInT Program Committee
Postdoctoral Fellows:
Markus Allgaier (UO OMQ)
Sayonee Ray (UNM CQuIC)
Pablo Poggi (UNM CQuIC)
Valerian Thiel (UO OMQ)

SQuInT Event Co-Organizers (Oregon)
Jorjie Arden
Holly Lynn

SQuInT Event Administrator (Oregon)
Brandy Todd

SQuInT Administrator (CQuIC)
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2020!