Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

Presenting Author: R. T. (Tyler) Sutherland, Lawrence Livermore National Laboratory
Contributing Author(s): Raghu Srinivas, Shaun Burd, Hannah Knaack, Andrew Wilson, David Wineland, Dietrich Leibfried, David Allcock, Daniel Slichter, Stephen Libby

Dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or through other techniques that reduce gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to make a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively smaller cost in gate speed.

Read this article online: https://arxiv.org/pdf/1910.14178.pdf

(Session 5 : Saturday from 5:00pm - 7:00pm)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Co-Organizer
Brian Smith, Associate Professor UO

SQuInT Program Committee
Postdoctoral Fellows:
Markus Allgaier (UO OMQ)
Sayonee Ray (UNM CQuIC)
Pablo Poggi (UNM CQuIC)
Valerian Thiel (UO OMQ)

SQuInT Event Co-Organizers (Oregon)
Jorjie Arden
Holly Lynn

SQuInT Event Administrator (Oregon)
Brandy Todd

SQuInT Administrator (CQuIC)
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2020!