Micron-scale superconducting wires for polarization insensitive, near-unity efficiency single-photon detection

Presenting Author: Dileep Reddy, National Institute of Standards and Technology, Boulder; University of Colorado, Boulder
Contributing Author(s): Jeff Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Sae Woo Nam, Richard P. Mirin

Current-biased, superconducting-nanowire single-photon detectors are typically fabricated with wire-widths in the 100-200 nm range in order to ensure sensitivity to single-photon absorption at near-infrared energies. This has constrained the fill factors of nanowire meanders to conform to low values that limit current-crowding effects. It has also penalized large-area devices with large kinetic inductances and polarization-dependent efficiencies. Recent advances in silicon-rich WSi amorphous-superconducting film compositions have extended device sensitivities to mid-infrared photons. They have also enabled near-infrared sensitive devices with wire-widths in the 1-3 micron range, thus allowing for larger active areas with lower inductances, faster pulse-recovery times, and near-complete polarization independence. I will be presenting the design and measurement results for fiber-coupled superconducting microwire near-IR single-photon detectors that benefit from the aforementioned qualities, and boast system efficiencies exceeding 98%. I will also be presenting application extensions into imaging, and low-photon-number resolved detection.

(Session 11 : Monday from 11:15am - 11:45am)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Co-Organizer
Brian Smith, Associate Professor UO

SQuInT Program Committee
Postdoctoral Fellows:
Markus Allgaier (UO OMQ)
Sayonee Ray (UNM CQuIC)
Pablo Poggi (UNM CQuIC)
Valerian Thiel (UO OMQ)

SQuInT Event Co-Organizers (Oregon)
Jorjie Arden
Holly Lynn

SQuInT Event Administrator (Oregon)
Brandy Todd

SQuInT Administrator (CQuIC)
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2020!