Simulating and evaluating the coherent Ising machine

Presenting Author: Noah Davis, University of Texas, Austin
Contributing Author(s): Josey Hanish, Antia Lamas-Linares, Brian LaCour

Physical annealing techniques present methods for taking advantage of qubits without the need for universal quantum computers. Particularly, annealing systems may offer calculation speed-ups for certain NP-hard optimization problems such as the Max-Cut problem and the Sherrington-Kirkpatrick model. Among promising annealing systems, the coherent Ising machine (CIM) has demonstrated particular potential for solving dense examples of these problems. A CIM uses classical measurement and feedback to couple the degenerate optical parametric oscillators which make up its logical qubits. We use the master equations governing this measurement-feedback system to simulate an idealized (but still classically controlled) CIM on a high performance computing cluster. We present an analysis of this simulation and compare it to experimental instances of CIMs along with other popular annealing methods.

(Session 9a : Monday from 4:45pm - 5:15pm)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Local Organizers
Rafael Alexander, Postdoctoral Fellow
Chris Jackson, Postdoctoral Fellow

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Assistant
Wendy Jay

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2019!