Abstracts

Engineered hopping integrals in exciton-polariton quantum simulators

Presenting Author: Na Young Kim, University of Waterloo
Contributing Author(s): Haining Pan, K. Winkler, C. Schneider, S. Hoefling

Microcavity exciton-polaritons are hybrid quantum quasi-particles as an admixture of cavity photons and quantum-well excitons. We engineer exciton-polariton-lattice systems, where we seek the beauty of non- zero momentum boson order arising from the intrinsic open-dissipative nature of the condensate as well as the topology of lattices. In this work, we quantify the hopping integrals of the lowest-band exciton-polaritons in terms of two physical parameters: nearest-neighbor site distance, d (3, 4,5 and 7 𝜇m), and detuning values Δ ( - 19 ~ 9 meV) in engineered two-dimensional honeycomb lattices. The artificial lattices are formed by an etching-overgrowth technique to module the cavity layer thickness to induce a photon confinement. The lattice potential depths vary 3-5 meV at different Δ values, and we construct the band structures of the exciton- polaritons via a low-power angle-resolved photoluminescence spectroscopy. The hopping integrals of nearest- neighbor and next-nearest neighbor sites in the lowest bands are extracted from the measured band structures by the tight-binding Hamiltonian fittings.

(Session 11 : Saturday from 11:30am-12:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2018!