Abstracts

Four wave mixing in a cold atomic ensemble for the generation of correlated photons pairs

Presenting Author: Andrew Ferdinand, CQuIC, New Mexico
Contributing Author(s): Francisco Elohim Becerra

Photon pairs generated by spontaneous four-wave mixing (FWM) in atomic ensembles provide a natural path toward quantum light-matter interfaces due to their intrinsic compatibility with atomic quantum memories. These photons are narrow band and have frequencies at or close to atomic resonances, and their temporal and spectral properties can be efficiently tailored to make them compatible with specific quantum memory protocols [1]. In addition, conservation of orbital angular momentum (OAM) in the FWM process enables the generated photons to form entangled qudits, which have applications in high-dimensional quantum information and communication. We study experimentally the generation of light from FWM in a cold ensemble of cesium atoms. We investigate theoretically the correlation and distribution of OAM modes occupied by photon pairs produced in spontaneous FWM as a function of experimentally accessible parameters of the process. These studies provide the basis for future investigations of photonic OAM correlation generated with FWM in atomic ensembles. [1] Du et al., Phys. Rev. Lett. 100, 183603. (2008)

(Session 13 : Saturday from 3:45pm - 4:15pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!