Abstracts

Quantum light matter interfaces using erbium doped yttrium orthosilicate

Presenting Author: Ioana Craiciu, IQIM, Caltech
Contributing Author(s): Evan Miyazono (co-first author), Jake Rochman, Tian Zhong and Andrei Faraon

Rare earth quantum light-matter interfaces (QLMIs), consisting of optical resonators coupled to ensembles of rare earth ions, are uniquely suited for various quantum information applications, including quantum memories and quantum optical-to-microwave transducers. Among rare earths, erbium is particularly appealing due to its highly coherent resonance within a telecom band, allowing integration with existing optical communication technology and infrastructure. Micro-resonator QLMIs have various advantages over bulk rare earth crystals. They permit on-chip integration with other elements, such as microwave resonators for optical-to-microwave conversion. In the context of quantum memories, they provide enhanced coupling to the ions, and when the resonator is impedance matched to the ions, they can raise the theoretical memory efficiency to 100%. For spectral hole-burning based quantum memories, the coupling of rare earth ions to the resonator can provide improved memory initialization via Purcell enhancement of optical lifetimes. We present nano scale quantum light matter interfaces in erbium doped yttrium orthosilicate (Er:YSO). Our two types of devices take the form of nanobeam photonic crystal resonators milled directly into Er:YSO and of amorphous silicon ring resonators on Er:YSO. This latter hybrid design represents our newest efforts in a scalable on chip QLMI architecture. We have fabricated ring resonators with measured quality factors of over 10^5, and evanescent coupling to an ensemble of erbium ions characterized by a cooperativity of 0.54. The nanobeam resonator design has a measured quality factor of around 25,000, and a cooperativity of 2.4. We present simulation and experimental results of the optical properties of these cavities, and their coupling to erbium ions, including a demonstration of Purcell enhancement of the erbium telecom transition. We then analyze their potential as quantum memories.

Read this article online: http://scitation.aip.org/content/aip/journal/apl/108/1/10.1063/1.4939651

(Session 13 : Saturday from 3:15pm - 3:45pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!