Abstracts

Protecting quantum information from noise -- a passive approach

Presenting Author: Ryan Epstein, Northrop Grumman

The steady improvement in coherence times and gate fidelities over the past several years has largely been due to reductions in noise and energy loss mechanisms. Achieving highly integrated quantum hardware, however, may necessitate tolerance of noisier signals and dirtier materials. Over the past couple of years, we have been looking at practical ways to design noise-resilience into quantum devices. In this talk, I’ll present theoretical work on methods for performing gates that are robust to control noise and that reduce qubit overhead and coupling complexity, building off of Bacon and Flammia’s Adiabatic Gate Teleportation technique. I’ll also talk about more fully noise-protected qubits and gates using blocks of qubits coupled together in Bacon-Shor-like codes.

(Session 9a : Friday from 5:15pm - 5:45pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!