Abstracts

Elucidating reaction mechanisms on quantum computers

Presenting Author: Nathan Wiebe, Microsoft
Contributing Author(s): Markus Reiher, Dave Wecker, Matthias Troyer, and Krysta Svore

It is well known that quantum simulation promises exponential speedups for finding full configuration interaction (FCI) solutions for quantum chemistry over the best known classical algorithms. But when will this be useful? How large or a quantum computer will we need to achieve this? Here we provide estimates that show that a reasonable sized quantum computer can be used to help understand how biological nitrogen fixation works, which is a problem that requires an FCI solution. This understanding could lead to a new generation of energy efficient methods for making fertilizer that would be significant industrially. Our work considers the overheads of fault tolerance and circuit synthesis and also introduces fundamentally new circuits for simulating chemical dynamics with lower depth and introduces new methods for parallelizing phase estimation over independent quantum computers. These latter contributions help address the biggest drawback of non-variational quantum eigensolvers: their inability to be parallelized.

Read this article online: https://arxiv.org/abs/1605.03590

(Session 4 : Thursday from 4:30pm - 5:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!