All Abstracts | Poster Abstracts | Talk Abstracts

Towards practical quantum simulators for quantum chemistry

Alan Aspuru-Guzik, Harvard University

(Session 8 : Friday from 1:45pm - 2:30pm)

My first talk about quantum computing for chemistry was at SQUINT 2005. Back then, I presented a gate-model approach for the simulation of quantum chemistry. In this talk, almost a decade later, I will present two approaches that are much less demanding on the requirements of the quantum device, yet are able to simulate Fermionic Hamiltonians such as those of molecular quantum chemistry. First, I will talk about the variational quantum eigensolver approach for solving chemistry problems in an arbitrary {\sl hardware ansatz}. I will follow by describing an approach for the simulation of quantum chemistry using adiabatic quantum computers. Both approaches are scalable and good candidates for an early implementation of quantum devices that could carry out a simulation of practical relevance to medical or industrial applications.