<

All Abstracts | Poster Abstracts | Talk Abstracts

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Arno Rauschenbeutel, Institute of Atomic and Subatomic Physics, Vienna University of Technology

(Session 7 : Saturday from 8:30am-9:15am )

Abstract. We recently demonstrated that laser-cooled cesium atoms can be simultaneously trapped and optically interfaced with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. This technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices. Finally, the use of nanofibers for atom trapping allows one to straightforwardly realize interesting trapping geometries which are not easily accessible w! ith freely propagating laser beams.