<

All Abstracts | Poster Abstracts | Talk Abstracts

Quantum information processing with trapped ions at NIST

Christian Ospelkaus, National Institute of Standards and Technology, Boulder

(Session 11 : Sunday from 8:30am-9:00am)

Abstract. We discuss experiments towards scalable Quantum Information Processing (QIP) in the Ion Storage Group at NIST Boulder. The architecture we pursue is based on quantum information stored in internal (hyperfine) states of the ions. Laser beams are used to induce both single-qubit gates and multi-qubit gates through the Coulomb interaction between ions held in the same potential well. Transport of ions allows for keeping the number of ions per trap zone small and for individual addressing. We first describe a set of experiments that demonstrate these basic techniques with two qubits in a scalable way to realize a programmable quantum processor. Based on current efforts towards scalable surface-electrode trap arrays, we discuss the integration of the various experimental techniques, for example integrated fiber-optic readout. We also discuss studies on decoherence and efforts to improve the fidelity of entangling operations. Moreover, we explore techniques that go beyond the established scheme of laser-based multi-qubit gates on ions held in a common trap. We demonstrate Coulomb coupling between two ions (mechanical oscillators) held in individual traps separated by 40 μm and observe oscillations of single energy quanta between the two ions. Furthermore, we explore a microwave near-field approach to quantum control. In particular we observe microwave single-qubit rotations with pi times of less than 20 ns, motional sideband transitions, and cooling of the ion motion. These two techniques could open new experimental perspectives for quantum simulation in surface-electrode trap arrays, for novel entangling schemes for QIP, and for precision spectroscopy. In related work our group explores multiqubit entanglement of ions in Penning traps and applications of quantum information protocols to optical atomic clocks. This work has been supported by IARPA, DARPA, NSA, ONR, and the NIST Quantum Information Program.