All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Quantum mechanical aspects of photosynthesis

Mohan Sarovar, University of California, Berkeley

(Session 12 : Sunday from 10:15-10:45)

Abstract. Identification of non-trivial quantum mechanical effects in the functioning of biological systems has been a long-standing and elusive goal in the fields of physics, chemistry and biology. Recent progress in control and measurement technologies, especially in the optical spectroscopy domain, have made possible the identification of such effects. In particular, electronic coherence was recently shown to survive for relatively long times in photosynthetic light harvesting complexes despite the effects of noisy bio-molecular environments. Combining techniques from quantum information, quantum dynamical theory and chemical physics, we performed several detailed studies to characterize the extent and nature of quantum dynamics in light harvesting structures. I will present results that demonstrate (i) the presence of long-lived quantum entanglement in these biologically relevant structures, (ii) the lack of sustained quantum speedup in light harvesting complex dynamics, and (iii) the effect of environmental fluctuations on coherence and transport properties in these systems. Our results scrutinize the fine details of light harvesting complex dynamics and reveal the complex interplay between coherent and decoherent dynamics present in these systems.