All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Simulated Electric and Magnetic Fields for Quantum Degenerate Neutral Atoms

William Phillips, Joint Quantum Institute

(Session 1 : Thursday from 6:45-7:30)

Abstract. William D. Phillips, Robert L. Compton, Karina Jiménez-García, Yu-Ju Lin, James V. Porto, and Ian B. Spielman Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland, 20899, USA We create an effective vector potential for ultra-cold neutral 87Rb atoms by applying laser beams that Raman-couple different magnetic sublevels having different linear momenta. The resulting distorted energy-momentum dispersion relationship is analogous to the Hamiltonian for a charged particle in a magnetic vector potential. A time-varying effective vector potential creates a synthetic electric field, and a spatially varying vector potential creates a synthetic magnetic field. Measuring the momentum imparted to the atoms allows a direct measurement of the impulse imparted by the synthetic electric field, and observation of vortices in the atom cloud reveals the action of the synthetic magnetic field. Such synthetic fields should address some of the difficulties in other approaches to using neutral atoms as quantum simulators of the integer and fractional quantum Hall effects. This work was supported by DARPA/ARO, the NSF, and the ONR.