All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Quantum-circuit guide to optical and atomic interferometry

Carlton Caves, University of New Mexico

(Session 1 : Thursday from 4:00-4:30)

Abstract. Atomic (qubit) and optical or microwave (modal) phase-estimation protocols are placed on the same footing in terms of quantum-circuit diagrams. Circuit equivalences are used to demonstrate the equivalence of protocols that achieve the Heisenberg limit by employing entangled superpositions of Fock states, such as N00N states. The key equivalences are those that disentangle a circuit so that phase information is written exclusively on a mode or modes or on a qubit. The Fock-state-superposition phase-estimation circuits are converted to use entangled coherent-state superpositions; the resulting protocols are more amenable to realization in the lab, particularly in a qubit/cavity setting at microwave frequencies.