All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Spin Squeezing, Large-Scale Entanglement, and Quantum Simulation in Ion Crystals

Michael Biercuk, National Institute of Standards and Technology

(Session 12 : Sunday from 11:15-11:45)

Abstract. M.J. Biercuk, H. Uys, D. Meiser, A. P. VanDevender, C. Ospelkaus, N. Shiga, W. M. Itano, and J. J. Bollinger We describe experimental and theoretical efforts aimed at the realization of nonlinear multipartite interactions using planar ion crystals in a Penning trap. This system benefits from the ability to confine large ion arrays with regular and stable crystalline order, and direct measures of particle number through resonant fluorescence detection. A global entangling interaction is engineered using state-dependent optical dipole forces, resulting in a simple distance-independent Ising interaction similar to single-axis-twisting spin squeezing. We present direct observations of optical-dipole-force excitation of the center-of-mass (COM) mode for a planar crystal using phase-coherent Doppler velocimetry. By combining state-dependent excitation of the COM mode with microwave-mediated global spin control in arrays of up to ~150 ions, we demonstrate a frequency-dependent loss of phase coherence in the spin ensemble due to coherent interaction of spin and motion. Prospects for realizing true deterministic spin squeezing using trapped ions, including the influence of dissipation via elastic Rayleigh scattering are presented, and future experimental directions described.