All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Dynamical Decoupling in a Model Quantum Memory

Michael Biercuk, NIST - Ion Storage Group

(Session 10 : Saturday from 4:00-4:30)

Abstract. We present results on the application of Dynamical Decoupling (DD) pulse sequences for the suppression of phase errors in a qubit array consisting of a laser-cooled crystal of trapped Beryllium ions. We study various DD sequences including CPMG and the recently discovered Uhrig DD sequence. Our results demonstrate the ability of UDD and CPMG to strongly suppress phase errors in the presence of ambient magnetic field noise, and show strong agreement with theoretical predictions for qubit decoherence. We also generate noise artifically and compare the efficacy of these DD sequences in Ohmic, 1/f and 1/f^2 noise environments -- making our qubit array a model quantum system capable of emulating solid state noise environments. Finally, we demonstrate real-time experimental optimization of DD pulse sequences without any required knowledge of the ambient noise environment.