COOPER PAIRS AS BOSONS

M. de LLANO*,†, F. J. SEVILLA† and S. TAPIA‡

* Texas Center for Superconductivity, University of Houston
Houston, TX 77204 USA
† Instituto de Investigaciones en Materiales, UNAM, 04510 México DF, Mexico
‡ Consortium of the Americas for Interdisciplinary Science,
University of New Mexico, Albuquerque, NM 87131, USA

Received 15 November 2005

Although BCS pairs of fermions are known to obey neither Bose–Einstein (BE) commutation relations nor BE statistics, we show how Cooper pairs (CPs), whether the simple original ones or the CPs recently generalized in a many-body Bethe–Salpeter approach, being clearly distinct from BCS pairs at least obey BE statistics. Hence, contrary to widespread popular belief, CPs can undergo BE condensation to account for superconductivity if charged, as well as for neutral-atom fermion superfluidity where CPs, but uncharged, are also expected to form.

Keywords: Cooper pairs; Bose–Einstein condensation; superconductors; superfluids.

1. Introduction

A recent electronic analog of the Hanbury Brown–Twiss photon-effect experiment Samuelsson and Büttiker strongly suggest electron pairs in a normal/superconductor junction to be bosons although further work seems needed to provide compelling empirical proof. On the other hand, assuming Cooper pairs (CPs) to be bosons, it was recently proven within a generalized Bose–Einstein condensation (BEC) model that includes the BCS-Bose crossover theory as a special case, that a BCS condensate is precisely a Bose–Einstein (BE) condensate consisting of equal numbers of particle- and hole-CPs, at least for the Cooper/BCS model interfermion interaction in the limit of weak coupling when the crossover picture reduces to BCS theory. This is significant since BCS argued (Ref. 22, footnote 18) that “our transition is not analogous to a Bose–Einstein condensation (BEC).” Somewhat later, Bardeen wrote that “… the picture by Schafroth (1955) … of electron pairs … which at low temperature undergo a BEC, is not valid.” In contrast, both Feynman and Josephson referred without proof to CPs as bosons.

On the other hand, a long-standing common objection to attempts to unify BCS and BEC theories for a description of superconductivity has been that
CPs, strictly speaking, cannot be considered bosons. In this paper we establish a clear distinction between BCS pairs and CPs, showing that while the former are not bosons the latter are very definitely, at least insofar as they obey BE statistics. The distinction, though elementary, is hardly if ever mentioned in the superconductivity literature, though it appears not to be as unacceptable among the neutral-fermion superfluidity community where it is also applied, albeit with a different interfermion interaction, to the BCS and Cooper pairs as in liquid 3He (Ref. 28) and in ultra-cold trapped alkali Fermi gases such as 40K (Ref. 29) and 6Li (Ref. 30). Recent studies have also appeared addressing superfluidity in degenerate Fermi gases.

Indeed, a BE-like condensate of dimers formed from neutral 40K (Ref. 36) or 6Li (Refs. 37–39) fermionic atoms via magnetically-tunable “Feshbach resonances” has only recently finally been observed.

2. Cooper Pairs

The original or ordinary CPs emerge by solving a Schrödinger-like equation in momentum space for two particles above the ideal-Fermi-gas (IFG) sea of the remaining $N-2$ system fermions. If two-hole pairs are also included, the extended Cooper eigenvalue equation yields purely imaginary values. This precludes defining CPs relative to an IFG sea. However, a more both general and self-consistent treatment starts with an unperturbed Hamiltonian representing not the Fermi sea but BCS-correlated ground state in the Bethe-Salpeter (BS) integral equations with hole propagation. When solved in the ladder approximation for bound two-particle and two-hole states, non-purely-imaginary eigenvalues are restored for what has been called the “moving CP” solution of the BS equations. The BS results in 3D (Ref. 43), 2D (Ref. 44), and 1D (Ref. 45) are consistent with each other, as expected.

Unlike the Fermi-atom case, the interfermionic interactions in (especially cuprate) superconductors are a deep, problematic and highly controversial issue. So, we confine ourselves to an electron gas interacting pairwise via the ingeniously simple Cooper/BCS model interfermion interaction

$$V_{kk'} = \begin{cases} -V & \text{if } k_F \text{ or } \sqrt{k_F^2 - k_D^2} < \left| k \pm \frac{1}{2} K \right| < \sqrt{k_F^2 + k_D^2} \\ 0 & \text{otherwise,} \end{cases}$$

where $V_{kk'} = L^{-d} \int dr \int dr' e^{-iK \cdot r} V(r, r') e^{ik' \cdot r'}$ is the double Fourier transform of $V(r, r')$, the (possibly nonlocal) interaction in d-dimensional coordinate space, with r the relative coordinate of the two electrons. Here $V > 0$, and $\hbar \omega_D \equiv \hbar^2 k_D^2/2m$ is the maximum energy of a phonon associated with the vibrating ionic lattice underlying the electron gas, while $E_F \equiv \hbar^2 k_F^2/2m$ is the Fermi energy and m is the effective electron mass. In Ref. 21 there are no hole pairs (viz., below E_F) so the lower limit in Eq. (1) was k_F, while in Ref. 22 it is $\sqrt{k_F^2 - k_D^2}$. In the simpler Cooper case it means that two electrons with momentum wavevectors k_1 and k_2
and \(k_2 \) interact with a constant net attraction \(-V\) when the tip of their relative-momentum wavevector \(k \equiv \frac{1}{2}(k_1 - k_2) \) points anywhere inside the shaded overlap volume in \(k\)-space of the two spherical shells in Fig. 1 whose center-to-center separation is \(K \equiv k_1 + k_2 \), the total (or center-of-mass) momentum wavevector for the pair. Otherwise, there is no interaction and hence no pairing. For neutral-fermion systems there is no cutoff \(\hbar \omega_D \) and \(V \) is not constant in \(k \) and \(k' \), except when the interaction range is much shorter than the average fermion spacing as in a trapped Fermi gas where it has become customary to employ contact (or \(\delta \)) interactions. Such are a special case of the more general finite-ranged, separable interaction, as is the interaction (1), introduced in Ref. 9, and for which the conclusions below will continue to apply.

Vectors \(k \) ending at all points of a simple-cubic lattice in \(k\)-space (in the 3D case) with lattice spacing \(2\pi/L \) with \(L \) the system size, ensure that the interaction (1) is nonzero provided such points are in the shaded overlap volume of Fig. 1. The endpoints of two vectors \(k \) and \(k_0 \) are illustrated in Fig. 2. In the thermodynamic limit there are infinitely many acceptable \(k \) values allowed for each fixed value of \(K \) for the \(K \geq 0 \) CP eigenvalue equation \(\sum_{k} V \frac{1}{(\hbar^2 k^2/m + \hbar^2 K^2/4m - 2E_F - E_K)^{-1}} = 1 \).

The prime on the summation sign signifies the restrictions in the interaction (1) using \(k_F \) as lower limit. For CPs consisting of equal and opposite momentum electrons \(K = 0 \), solving Eq. (2) analytically gives the familiar result of infinite-lifetime, negatively-bound (with respect to \(2E_F \)) CPs

\[
E_0 = -2\hbar\omega_D/\left[\exp\{2N(E_F)V\} - 1\right]_{\lambda=0}^{-2\hbar\omega_D e^{-2/\lambda}}
\]

where \(\lambda = N(E_F)V \geq 0 \) with \(N(E_F) \) the density of electronic states at the Fermi energy. The first expression for \(E_0 \) is exact for all values \(\lambda \) in 2D [where \(N(\epsilon) \) is
constant] and is otherwise a good approximation if $\hbar \omega_D \ll E_F$ as occurs in metals. If hole CPs are included in the BS scheme along with electron CPs as in Eq. (2) and Eq. (3), instead of Eq. (3) one obtains the evidently unphysical purely-imaginary result

$$E_0 = \pm i2\hbar \omega_D / \sqrt{e^{2/\lambda} - 1}$$

(see detailed treatment in Ref. 27). Replacing the IFG sea by the BCS ground-state sea, instead of Eq. (2) the eigenvalue equation for E_K in 2D (Ref. 44) and in 1D (Ref. 45) is rather

$$\frac{1}{2\pi} \lambda \hbar v_F \int_{k_F-k_D}^{k_F+k_D} dk \int_0^{2\pi} d\varphi u_{K+2+k} v_{K+2-k} \times \left\{ u_{K+2-k} v_{K+2-k} - u_{K+2+k} v_{K+2+k} \right\} \times$$

$$\frac{E_{K+2+k} - E_{K+2-k}}{-E_K^2 + (E_{K+2+k} + E_{K+2-k})^2} = 1$$

where $v_F \equiv \sqrt{2E_F/m}$, φ is the angle between K and k, k_D is defined by $k_D/k_F \equiv \hbar \omega_D / 2E_F \ll 1$, $E_k \equiv \sqrt{\xi_k^2 + \Delta^2}$ with $\xi_k \equiv \hbar^2 k^2 / 2m - E_F$ and Δ is the electronic gap, while $v_F^2 \equiv \frac{1}{2}(1 - \xi_k/E_k)$ and $u_k^2 \equiv 1 - v_k^2$ are the usual Bogoliubov functions.51 Note that the lower limit in the interaction (1) is being taken as $\sqrt{k_F^2 - k_D^2}$ as in BCS theory22 which does not exclude hole pairings. Besides endowing CPs with the physically expected finite lifetimes, the more general BS treatment yields the nontrivial eigenvalue solution for $K = 0$ given by $E_0 = 2\Delta$, with $\Delta \equiv \hbar \omega_D / \sinh(1/\lambda) \rightarrow 2\hbar \omega_D e^{-1/\lambda}$ the single-electron BCS energy gap, as opposed to the ordinary CP problem giving Eq. (3). [Note the factor of two difference in the exponential compared with Eq. (3) due to excluding21 or not22 hole pairs.] The nontrivial (new) BS solution governed by Eq. (5) has been called43-45 a “moving CP” composite-boson excitation mode to distinguish it from another (a

Fig. 2. Two distinct relative-momentum wavevector values $k \equiv \frac{1}{2}(k_1 - k_2)$ and $k' \equiv \frac{1}{2}(k_1' - k_2')$ (dashed lines) whose tips are within the overlap volume of Fig. 1. They contribute to the summation in (2) or to the integral in (5) to determine a CP energy E_K. This illustrates why the $\delta_{k,k'}$ term for BCS pairs in (15) is always zero for CPs, with the Pauli Principle being strictly satisfied.
trivial or known) sound wave solution sometimes called the Anderson–Bogoliubov–Higgs (Ref. 40 p. 44), Ref. 52 and 53 excitation mode which in contrast with the moving CP mode vanishes as $K \to 0$ for any finite coupling, i.e. is gapless, and is governed by another eigenvalue equation different from Eq. (5). In the pure boson gas, on the other hand, both “particle” and “sound” solutions are indistinguishable. In the fermion case of interest here it should be feasible to search for, identify and distinguish both particle and sound modes experimentally, e.g. see Ref. 56.

3. BCS Pairs with Nonzero Total Momentum

Whether the pairwise interfermion interaction is between charge carriers or between neutral atoms, a CP state of energy E_K, defined via eigenvalue equation (2) or (5), will clearly be characterized only by a definite K but not definite k. Although elementary, this is our main point. It contrasts with that of a “BCS pair” defined as a dimer with fixed K and k (or equivalently fixed k_1 and k_2), even though only the case $K = 0$ is considered in Ref. 22, for which their annihilation b_k and creation b_k^\dagger operators are not quite bosonic since they obey the relations, Ref. 22, Eqs. (2.11)–(2.13),

$$[b_k, b_k^\dagger] = (1 - n_{-k_1} - n_{k_1}) \delta_{kk'}$$

$$[b_k^\dagger, b_k^\dagger] = [b_k, b_k] = 0$$

where $n_{+k_s} \equiv a_{+k_s}^\dagger a_{+k_s}$ are fermion number operators, with creation $a_{k_1,s}^\dagger$ and annihilation $a_{k_1,s}$ operators referring to the fermions, and

$$\{b_k, b_k^\dagger\} = 2b_k b_k^\dagger (1 - \delta_{kk'})$$

which is not quite fermionic, unless $k = k'$ when Eq. (6) is not bosonic. The precise Bose commutation relations are, of course,

$$[b_k, b_k^\dagger] = \delta_{kk'}$$

$$[b_k^\dagger, b_k^\dagger] = [b_k, b_k] = 0$$

with Eq. (9) differing sharply from Eq. (6). The fermion creation $a_{k_1,s}^\dagger$ and annihilation $a_{k_1,s}$ operators satisfy the usual Fermi anti-commutation relations

$$\{a_{k_1,s}^\dagger, a_{k_1',s'}^\dagger\} = \{a_{k_1,s}, a_{k_1',s'}\} = 0$$

$$\{a_{k_1,s}, a_{k_1',s'}^\dagger\} = \delta_{k_1 k_1'} \delta_{ss'}$$.

The distinction between BCS pairs and CPs holds for the original or “ordinary” CPs Ref. 21 as in Eqs. (2) and (3). It also applies to the generalized BS CPs defined more consistently without excluding two-hole pairs when the lower limit in the interaction (1) is taken as $\sqrt{k_F^2 - k_D^2}$ as in BCS theory.22
The BCS-pair annihilation and creation operators for any $K > 0$ can be defined quite generally as
\[b_{kK} \equiv a_{k_2\downarrow}a_{k_1\uparrow} \quad \text{and} \quad b_{kK}^\dagger \equiv a_{k_1\uparrow}^\dagger a_{k_2\downarrow}^\dagger \] (13)
where $a_{k_1\downarrow}$ and $a_{k_1\uparrow}$ obey Eqs. (11) and (12), and as before $K \equiv \frac{1}{2}(k_1 - k_2)$ and $K = k_1 + k_2$ are the relative and total (or center-of-mass) momentum wavevectors, respectively, associated with two fermions with wavevectors $k_1 = K/2 + k$ and $k_2 = K/2 - k$. (14)

Using the same techniques to derive Eqs. (6)–(8) valid for $K = 0$, the operators b_{kK} and b_{kK}^\dagger are found to satisfy: (a) the “pseudo-boson” commutation relations
\[[b_{kK}, b_{k'K}^\dagger] = (1 - n_{K/2-k_1} - n_{K/2+k_1})\delta_{kk'} \] (15)
\[[b_{kK}^\dagger, b_{k'K}^\dagger] = [b_{kK}, b_{k'K}] = 0 \] (16)
where $n_{K/2\pm k_1} \equiv a_{K/2\pm k_1}^\dagger a_{K/2\pm k_1}$ are fermion number operators; as well as (b) a “pseudo-fermion” anti-commutation relation
\[\{b_{kK}, b_{k'K}\} = 2b_{kK}b_{k'K}(1 - \delta_{kk'}) \] (17)

Our only restriction was that $K \equiv k_1 + k_2 = k'_1 + k'_2$. If $K = 0$ so that $k_1 = -k_2 = k$ (the only case considered by BCS), and calling $b_{kK=0} = b_k$, etc., Eqs. (15)–(17) become Eqs. (6)–(8), as they should. So, neither BCS pairs with $K \geq 0$ are bosons as the relation (15) contains additional terms not present in the the usual boson commutation relations analogous to Eq. (9).

To our knowledge, no one has yet succeeded in constructing CP creation and annihilation operators that obey Bose commutation relations, starting from fermion creation $a_{k_1\downarrow}$ and annihilation $a_{k_1\uparrow}$ operators, as is postulated in Refs. 2 and 3 in a generalized BEC theory that contains BCS theory as a special case. This postulation is grounded in magnetic-\textit{flux quantization experiments} that establish the presence of charged pairs — albeit without being able to specify the sign of those charges. However, although the eigenvalues of $b_{kK}^\dagger b_{kK}$ are 0 or 1 in keeping with the Pauli Exclusion Principle, those of $\sum_k b_{kK}^\dagger b_{kK}$ are evidently 0, 1, 2, etc. because of the indefinitely many values taken on by the summation index k. This implies BE statistics and corroborates the qualitative conclusions reached above. A discussion in greater detail of this is found in Refs. 63 and 64.

4. Conclusion

In conclusion, in the thermodynamic limit any number of CPs with a definite total (or center-of-mass) wavevector K can occupy a single state of CP energy E_K and thus obey BE statistics. Hence, CPs can undergo a BEC. All this holds for any coupling, i.e. regardless of the size of the CPs and of their mutual overlap. As in liquid 4He, the BEC statistical mechanism may serve as a starting point —
even before the effects of interboson interactions (excluded also in BCS theory) are accounted for — in constructing a microscopic theory of superconductivity, or of neutral-fermion superfluidity, that will eventually lead to T_c values calculated from first principles without adjustable parameters and that hopefully agree with observed ones.

Acknowledgments

M. de Llano especially thanks John R. Clem for encouraging them to write this paper, as well as M. Casas and M. Moreno for discussions, E. Braun and S. Ramirez for invaluable input, and UNAM-DGAPA-PAPHT (Mexico) for grant IN106401 as well as CONACyT (Mexico) for grant 41302 in partial support. He also thanks the Texas Center for Superconductivity, University of Houston, for its hospitality and support. The authors thank the NSF (USA) for partial support through grant INT-0336343 made to the Consortium of the Americas for Interdisciplinary Science, University of New Mexico, Albuquerque, NM, USA.

References

40. N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, Fortschr. Phys. 6, 605 (1958).
41. N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959).
45. M. Fortes, M. de Llano and M. A. Solís, to be published.
62. C. E. Gough, private communication.