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1 Abstract

In this study, asymmetries in the collisions between bound states with like and unlike spin states are
investigated. The goal is to provide theoretical ground for probing the angular momentum structure
of the proton using helicity asymmetries in polarized proton-proton collisions. In order to provide
proof of principle for the presence of asymmetries between like and unlike helicity collisions, this
study uses nonrelativistic time dependent scattering theory. A simple collision model between two
bound states is used with potentials specially selected for this study. While at first order there is no
helicity asymmetry between like and unlike helicity collisions, terms at second order do not appear
to vanish. However, further investigation is necessary to prove that these second order terms do not
vanish unexpectedly.

2 Motivation

It is known that the spin of the proton is not entirely due to the spins of the constituent quarks
[1]. One possible source for this missing spin is the orbital angular momentum of the constituents.
In order to determine if there is any spin contribution from orbital angular momentum of the
constituents, there is a need for experimental techniques that probe the angular momentum of the
partons.

One experimental probe of the orbital angular momentum has been suggested and studied by
Douglas Fields and his group at the University of New Mexico [2]. Fields has suggested that orbital
angular momentum might have an effect on the observed momenta perpendicular to the collision axis
of the final products of the hard scattering of two polarized protons. This momentum perpendicular
to the collision axis is called transverse momentum. The effect of angular momentum on the final
products would have on the transverse momentum depends on the impact parameter of the collision,
as well as the relative directions of the angular momentum. Figure 1 illustrates this process.

Unfortunately, little progress has been made in determining the impact parameter of proton-
proton collisions experimentally, so there is a question as to whether an effect can be seen when all
impact parameters are summed over. A paper by Meng et al [3], making a similar suggestion for
probing angular momentum using polarized proton-proton collisions, found that an effect could still
be seen even after summing over all impact parameters. A more recent paper [4] by a member of
Fields’ group here at UNM considered semi-classical collisions of two rotating bodies, and also found
that an effect should be seen after integrating over all impact parameters.

The effect that should be observed is an asymmetry in the transverse momentum to the beam
axis between collisions with like helicity and collisions with unlike helicity. When a system has
angular momentum in the same direction as it travels it has positive helicity, and when the angular
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Figure 1: Diagrams for the classical collisions of rotating bodies with various impact parameters
and helicity combinations, illustrating the transverse momentum of the collision products. Starting
from upper left and moving clockwise, a like helicity collision with large impact parameter gives a
large transverse momentum, an unlike helicity collision with large impact parameter gives a small
transverse momentum, an unlike helicity collision with a small impact parameter gives a large
transverse momentum, and a like helicity collision with a small impact parameter gives a small
transverse momentum.
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momentum is anti-aligned with its motion it has negative helicity. In like helicity collisions, both
bodies have helicities of the same sign, while in unlike helicity collisions they have opposite signs.

Despite the amount of effort put into determining this effect using classical methods, there
has been little work using quantum mechanical scattering theory to see if the effect should be
expected. The purpose of this paper is to investigate helicity asymmetries in the quantum mechanical
scattering of bound states with angular momentum. The next section is a brief introduction to time
dependent quantum scattering, which will serve to prepare a reader unfamiliar with the subject for
the calculations that follow. The next section will also introduce the notation used in this paper.

3 An Overview of Scattering Theory

Classical scattering theory involves the study of collisions. Quantum scattering theory is the exten-
sion of scattering theory into the quantum realm, and many of the features of classical scattering
carry over. Of key importance to the theory of quantum scattering is the scattering operator, which
will be discussed first. We begin by considering an elastic collision off some fixed potential, and gen-
eralize to inelastic and multiple particle scattering later. Throughout we will follow the formalism
presented by Taylor [5].

3.1 The Scattering Operator

In a beginning discussion of classical scattering we are concerned with a particle with some given
momentum, which scatters off of a fixed target. The scattering particle approaches the target from
a long way off during a period of time which is very large compared to the time elapsed in the
scattering event, and then with some new momentum travels a large distance over a long period of
time before it is detected. Since the starting and ending distances are large, and the times elapsed
before and after the collision are large, we consider that the particle has approached from spatial
infinity at time t = −∞ and afterward travels off to spatial infinity at time t = +∞. We call the
trajectory in from spatial infinity the in asymptote and the trajectory back out the out asymptote.
Provided that whatever forces cause the scattering fall off quickly with distance from the target, we
then treat the particle as a free particle along each of this asymptotes, which are then connected in
the middle by some possibly complicated scattering trajectory.

In order to move this picture into the quantum realm, we imagine that there is some scattering
state |ψ〉 at t = 0. At this time the state evolves under the full Hamiltonian H of the system. We
then label the state at t = −∞ as |ψin〉 and the state at t = +∞ as |ψout〉. In each of these states

the particle is a free particle evolving under the free Hamiltonian H0 = p2

2m
.

In order to guarantee the validity of this picture, and also derive the results that follow, we make
some assumptions about the scattering potential. We assume that the potential falls off faster than
r−3 as r goes to infinity, and that the potential has a weaker singularity as r goes to zero than
r−2. We also assume that the potential has only a finite number of finite discontinuities. These
requirements are fairly stringent; for example, these conditions exclude the Coulomb potential from
consideration. It is worth noting that the Yukawa potential of nuclear interactions does indeed meet
these requirements.

Given these assumptions, the picture of in and out asymptote free states holds, and we write

U(t)|ψ〉 −→
t→−∞ U0(t)|ψin〉 , (1)

U(t)|ψ〉 −→
t→+∞

U0(t)|ψout〉 , (2)
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where

U(t) = e−iHt/h̄ , (3)

U0(t) = e−iH0t/h̄ , (4)

are the usual propogator and the free particle propogator, respectively. Since these are unitary
operators (for time independent Hamiltonians, an assumption we make throughout), we act on both
sides of these rough relations with U †(t). We can then write that

|ψ〉 = lim
t→−∞

U †(t)U0(t)|ψin〉 ≡ Ω+|ψin〉 (5)

|ψ〉 = lim
t→+∞

U †(t)U0(t)|ψout〉 ≡ Ω−|ψout〉. (6)

That these limits exist must be proved, and once they are they can be taken as the definition of
the operators Ω±, which are known as the Møller operators. They carry the in asymptote forward
in time to the scattering state, in the case of the Ω+, and the out asymptote backward in time to
the scattering state, in the case of the Ω−. The proof of the existence of the above equations is
somewhat tricky, and the interested reader is referred to Taylor. Since these operators carry the
asymptote states onto only those scattering states where the particle can have come from infinity or
escape to infinity, their range is orthogonal to the bound states of the Hamiltonian at t = 0.

As limits of unitary operators, these Møller operators are what is known isometric operators.
They are not unitary since they map from a complete Hilbert space at t = ±∞ onto only part of the
Hilbert space at t = 0. Nevertheless, in order to conserve probability, the Ω± still satisfy Ω†

±Ω± = 1,
so we can write the out asymptote as a function of the scattering state,

Ω†
−|ψ〉 = Ω†

−Ω−|ψout〉 (7)

= |ψout〉 . (8)

With this we can write

|ψout〉 = Ω†
−|ψ〉 (9)

= Ω†
−Ω+|ψin〉 (10)

≡ S|ψin〉, (11)

where S is the scattering operator. The scattering operator evolves |ψin〉 to |ψout〉 and tells us
everything about the scattering process in question. This formalism is very practical from an exper-
imental standpoint. The state sent into the scattering process is in principle well controlled, and the
state eventually emerging from the collision and entering into our detectors and can be measured
precisely. Since the scattering operator is determined by the particular interaction under question,
by knowing the in and out states experimenters can probe the interaction occurring in between.

We imagine some specific initial state |ψin〉 that evolves to some |ψ+〉 at t = 0 via the Ω+

operator, and some specific final state |ψout〉 at t = 0 that is carried to some |ψ−〉 via Ω−. The
probability that this initial state evolves into this final state is then the squared product of the two
at t = 0,
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P = |〈ψ − |ψ+〉|2 (12)

= |〈ψout|Ω†
−Ω+|ψin〉|2 (13)

= |〈ψout|S|ψin〉|2 . (14)

As our final result regarding the scattering operator, it can be shown that the S operator conserves
energy, and must contain the sum of the identity operator (particle is not scattered) and some element
determining the scattering process. Altogether this yields the matrix element in the momentum
representation,

〈p′|S |p〉 = δ(p′ − p)− 2πiδ(Ep′ − Ep)〈p′|T |p〉 , (15)

where 〈p′|T |p〉 is called the on shell T matrix element and is sometimes just called t(p′← p). “On
shell” refers to the conservation of energy; the T operator is also extended to the “off shell” region
where it is useful for mathematical analysis, but not physical in the sense that the overall scattering
process must conserve energy. It should be noted that in relativistic scattering, very short lived
processes occur off shell because of the uncertainty relationship ∆E∆t ≥ h̄/2; this is the case for
scattering off of virtual particles.

3.2 The Differential Cross Section

We imagine sending a beam of particles with random impact parameters at a target, and we can
count the number of particles that are scattered. With the density of the beam measured in particles
per unit area, n, the number of particles scattered is

N = σn . (16)

We see that σ is the probability of scattering, per particle per unit area. σ is of course the cross
section, and is the effective cross sectional area of the target in the case where all particles entering
the cross sectional area are scattered.

While σ represents the total cross section for all kinds of scattering, if we select out a specific
scattering process, we have a different effective area for scattering. If we choose to examine the
number of particles that scatter into a specific differential element of solid angle, dΩ then we arrive
at the differential cross section for that scattering,

σ(dΩ) =
dσ

dΩ
dΩ . (17)

The differential cross section can then be integrated over some region of solid angle to arrive at
the effective cross sectional area of the target for scattering into that region. Since the differential
cross section is related to the probability of scattering, it seems clear that we can relate it to the
scattering operator. This is accomplished by first recalling that the probability density of measuring
some specific scattered final state in momentum space is

ρ(p) = 〈ψout|p〉〈p|ψout〉 (18)

= |ψout(p)|2 , (19)
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and then integrating this over a small element of solid angle dΩ and all magnitudes of momenta.
This gives the probability of measuring some final state in a differential unit of solid angle,

P (dΩ← ψin) = dΩ

∫ ∞

0

p2dp|ψout(p)|2 . (20)

It is worth noting here that we are using momentum space rather than a position representation.
This may be a bit confusing, since when we speak of scattering into some unit of solid angle we
usually picture some part of a sphere around the scattering event, clearly an element of position
space. However, the unit of solid angle in momentum space gives the direction of the particle’s
momentum, and since it will travel in the direction of its momentum, we expect the particle to
impact our detectors in a corresponding unit of solid angle in position space.

Next we recall that |ψout〉 = S|ψin〉, and write the momentum representation wavefunction of
the out asymptote in terms of the scattering operator and the in asymptote wavefunction,

ψout(p) = 〈p|ψout〉 (21)

= 〈p|S |ψin〉 (22)

=

∫
dp′〈p|S |p′〉ψin(p′) . (23)

To finally arrive at the cross section, we need a beam of particles, each with a random impact
parameter. We imagine then that each ψin is composed of a wavefunction φ(p) well peaked in
momentum space, which is acted on by a rigid translation in position perpendicular to the beam. This
translation by an impact parameter b in the momentum representation is achieved by multiplying
φ(p) by e−ib·p/h̄ . These impact parameters are uniformly distributed over all possible values of b.
Thus,

ψin(p,b) = φ(p) exp−ib·p/h̄ . (24)

We then need to integrate the probability of scattering over all impact parameters, so that

dσ

dΩ
dΩ =

∫
d2bP (dΩ← ψin) . (25)

Combining equations (20) - (25), and inserting equation (15) for the representation of the scatter-
ing operator, we have a mess. This mess can be resolved very nicely with the help of the assumption
that φ(p) is well peaked about some momentum p0. We also have to avoid consideration of the
flux into the small region p0, because in this region scattered particles are indistinguishable from
unscattered particles. With these assumptions, the delta functions can be resolved to remove all the
integrals, and the final result is that

dσ

dΩ
= (2π)4m2|t(p′ ← p)|2 , (26)

where m is the mass of the particle.
Sometimes the entire right hand side of the equation is defined as the square of the“scattering

amplitude” |f(p′ ← p)|2 . Clearly f(p′ ← p) is directly proportional to t(p′ ← p), and since there
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is no need to use both we will use t(p′ ← p) exclusively. The key point in all this convoluted math
is this: the quantity measured in an practical scattering experiment, dσ

dΩ , is directly proportional to
the complex square of the on shell T matrix element. The majority of Sections 4 and 5 of this paper
is devoted to calculating the T matrix element, in order to check to see if an experimenter could
measure a difference in cross section between like and unlike helicity collisions. Therefore, we need
some tools to calculate the T operator in terms of the scattering interaction.

3.3 The T Operator

To relate the T operator to the interaction potentials, we begin by defining the Green’s Operator,

G(z) = (z −H)−1 = (z −H0 − V )−1 . (27)

Here z is any (possibly complex) number such that the inverse exists. For instance, z − H cannot
be inverted when z is an eigenvalue of the Hamiltonian, z = E. Then we say that G(z) has a simple
pole at z = E, and we can avoid this pole when necessary by considering instead z = E + iε, and
take the limit as ε→ 0 through positive values. If we have a full description of G(z), including poles
(places where the Hamiltonian has discrete eigenvalues) and branch cuts (where the Hamiltonian
has continuous eigenvalues), then this is equivalent to knowing the entire energy spectrum of the
Hamiltonian.

It is also useful to have in hand the free Green’s operator,

G0 = (z −H0)−1 , (28)

and its relationship with G(z),

G(z) = G0(z) +G0(z)V G(z) . (29)

This last relation is proved via the operator identity

A−1 = B−1 +B−1(B −A)A−1 . (30)

We next define the operator T (z) in terms of the Green’s operator,

T (z) = V + V G(z)V . (31)

It can be shown from equation (29) that

T (z) = V + V G0T (z) . (32)

This last relationship is especially important, because the action of the free Green’s operator on
momentum states is known,

〈p′|G0(z )|p〉 =
δ(p′ − p)

z − p2/2m
. (33)
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By inserting equation (32) into itself again and again, a series solution is formed in terms of just
the potential and the free Green’s operator,

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + · · · . (34)

This series is known as the Born series, and assuming it converges, T (z) can be approximated
by truncating the series at an appropriate point. Taking the first term alone is known as the first
Born approximation, the first two alone are the second Born approximation, and so on.

The Born series is used frequently in scattering problems due to the difficulty or even impossibility
of calculating the matrix elements of T (z). It will be used here as the exclusive method for calculating
cross sections and helcity asymmetries, under the assumption that all potentials selected for the study
(see sections 4 and 5 below) converge sufficiently rapidly for the first term or two to dominate. For
high energy processes, the Born series does serve as a good approximation [5], and since the models
here are meant to evoke high energy scattering of protons, using such a power series approximation
gives further parallels between the models used here and those processes.

Finally, we must prove the relationship between this T (z) operator and our on shell T operator
described previously. By writing out the scattering operator in terms of the Møller operators, and
those in turn in terms of the unitary operators, a series of mathematical exercises and tricks can be
used to show that

〈p′|S |p〉 = δ(p′ − p)− lim
ε→0+

2πi δ(Ep′ − Ep)〈p′|T (Ep + iε)|p〉 . (35)

Now it can be seen that what was called T before is in fact the seemingly arbitrarily defined
T (z) operator when z = Ep + iε. We can see that the addition of the infinitesimal positive ε is key,
since it allows us to avoid the values of z where T (z) does not exist, and allows us to use the tools of
contour integration when we are confronted with integrating terms like the denominator of equation
(33) over a full range of momenta.

For the remainder of this paper, it will be more convenient to write just z instead of Ep + iε and
just T instead of T (Ep + iε).

3.4 Multichannel Scattering

In single channel scattering, the assumption was made that just a single particle was scattering off
of a potential. These results can be generalized to an elastic collision between two particles by using
center of mass coordinates, but that is as far single channel scattering can go. In order to investigate
the scattering of bound states, we must generalize to multichannel scattering.

We take as an example a single particle scattering off of a pair of particles bound together. There
are many possible outcomes of this scattering. The lone particle can scatter elastically off the pair,
it can excite the bound state, and it can break the pair apart so that there are three free particles in
the final state. There can even be a case where the lone particle knocks one of the members of the
bound state out and takes its place. Each possible end state represents a different“channel” that the
initial state can evolve into. Adding to this all of the different possible initial states that the three
particles can begin in, there is a large number of channels even for this relatively simple picture.

Thankfully generalizing to the multichannel picture is straightforward. We now have a variety
of |ψin〉 and |ψout〉 states to consider as asymptotes, and these asymptotes no longer have to evolve
under the free Hamiltonian. Rather, the Hamiltonian of an asymptote is the full Hamiltonian with
all interactions between particles that are allowed to move far apart subtracted out. For instance,
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in the case of a lone particle scattering off the bound state, |ψin〉 will evolve under a Hamiltonian
which includes the interaction between the two bound particles, but no other potentials. In the case
of an out asymptote |ψout〉 where all the particles are free (the breakup channel), the appropriate
Hamiltonian is once again the free particle Hamiltonian.

Since the Hamiltonians of the asymptotes depend on the particular channel under consideration,
the Møller operators depend on the in and out channels, and so also does the scattering operator.
We now combine one scattering operator for each combination of in and out channel into a larger
scattering operator with two indices,

|ψout〉 = Sβα|ψin〉 , (36)

where α is some label corresponding to the in asymptote and β corresponds to the out asymptote.
The matrix element of the scattering operator for a particular transition between an in channel

and out channel is written as

〈p
¯

′, β|Sβα|p
¯
, α〉 = δ(p

¯

′ − p
¯
)δβα − 2πi δ(Ep′ − Ep)〈p

¯

′, β|T βα|p
¯
, α〉 , (37)

where a convention to be used throughout this paper has been introduced, where the set of all
momenta in a state is represented with a bar beneath the momentum variable. For instance, k

¯
=

k1,k2,K,P. The δ function between the momentum sets then corresponds to the set of all δ
functions between the various momenta. We see here that just as we have a different scattering
operator for each combination of in and out channels, we have a different T operator for each set of
channels. It is defined as

T βα(z) = V α + V βG(z)V α , (38)

where here V α refers to the sum of potentials between particle bunches in the in channel, which
are also the potentials subtracted from the full Hamiltonian to get the Hamiltonian the in channel
evolves under. Similarly, V β refers to the sum of potentials in the out channel between particle
bunches, and again these are the potentials subtracted from the full Hamiltonian to give the out
channel Hamiltonian. This notation is convenient to write but can certainly be confusing. In our
example of a single particle scattering off of a bound state, V α is the sum of potentials with which
the single particle will eventually interact with the bound state, and does not include the potential
holding the bound state together. If the lone particle was to then break up the bound state, then
V β would include all of the potentials.

With the idea of channel Hamiltonians,

Hα = H − V α , (39)

we can define the channel Green’s operators, which are hopefully (but not usually) more tractable
than the full Green’s operator appearing in equation (38). They are

Gα(z) = (z −Hα)−1 . (40)

By using the same operator identity as in the single channel case equation (30), we can write an
equation for T βα(z) in terms of the out channel Green’s operator,
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T βα(z) = V α + V βGβ(z)T βα . (41)

This relationship can be inserted into itself again and again just as before, generating an infinite
series for the multichannel scattering process analogous to the Born series for the single channel
process. This series is

T βα(z) = V α + V βGβ(z)V α + V βGβ(z)V βGβ(z)V α + · · · . (42)

The breakup channel is especially convenient when using this series, since in that case Gβ is just
the free Green’s operator, as discussed above.

The final consideration in adapting single channel scattering to multichannel scattering is the
calculation of the differential cross section. Unfortunately there is no clean generalization. The
derivation of each differential cross section depends on the particulars of out channel, an also the
particular question asked. For the example of the lone particle and bound state collision, one might
ask for the cross section for finding one of the particles in a differential unit of solid angle without
caring where any of the other particles are found. Alternately, one might ask where one of the
particles is found given that the other two are detected with specific energies in specific places. This
second example of differential cross section is the most specific question that can be asked. It is,
in a sense, the “most differential” of all the cross sections, and all others can be built up from it
by integrating over the variables that the experimenter is uninterested in or unable to measure.
One result that carries through all scattering processes and channels choices is that this “most
differential” cross section (denoted here as Dσ

DΩ
) is proportional to the square of the T operator

bracketed between the initial and final states,

Dσ

DΩ
∝ |〈final|T βα|initial〉|2 . (43)

The objective of this paper is to compare the differential cross sections between like and unlike
helicity collisions, so the constants of proportionality are unimportant. They depend on the partic-
ular case under consideration, and will divide out in the final asymmetry calculation, so they will
not always be given.

4 The Three Body Problem

The first step in investigating helicity effects in quantum scattering is to see whether such effects
are present in a simple and easily calculated model. It also serves as a warmup for the four body
scattering problem which is the main topic of this thesis.

4.1 The Model

We imagine that we have two particles, particles 1 and 2, both with mass m. Initially, particle 2 is
bound to a third particle whose mass M is much greater than m, so that (in the limit that M is
infinite) particle 3 sits at the origin. The initial bound state between particles 2 and 3 is denoted ψ,
and the interaction between 2 and 3 is assumed to be spherically symmetric. Particle 1 is initially
a plane wave, and interacts with particle 2 via a Yukawa potential V12. It is assumed that the
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coupling constant is small, so that the Born series converges rapidly, and the first term serves as a
good approximation.

Note that since particle 3 remains at the origin, this model is identical to a two body problem
with particle 2 bound to the origin. We do not enforce conservation of momentum in this problem,
because particle 3 can freely absorb any unaccounted for momentum.

We are interested in the breakup channel, where in the final state both particles 1 and 2 are
plane waves. Their final momenta will be k1 and k2, respectively, and particle 1 will have an initial
momentum k0,1

4.2 The First Born Approximation

The first Born approximation for this breakup process is the first term in the infinite series of
equation (42), and is denoted by T1. It’s matrix element is given by

〈k
¯
|T1|i〉 = 〈k1,k2|V12 |k0,1, ψ〉 (44)

=

∫
dx1dx2dx′

1dx′
2〈k1,k2|x1,x2〉〈x1,x2|V12 |x′

1x
′
2〉〈x1,x2|p1ψ〉 (45)

= (2πh̄)−9/2

∫
dx1dx2e−i(k1·x1+k2·x2−k0,1·x1)/h̄V12 (x2 − x1)ψ(x2) . (46)

To solve this, we make the shift substitution x = (x2 − x1), X = x2, rearrange the terms, and
use the Fourier transform of the Yukawa potential, which gives

= (2πh̄)−9/2

∫
dxdX e−i(k1−k01)·x/h̄ e−i(k1+k2−k0,1)·X/h̄V (x)ψ(X) (47)

= (2πh̄)−3

√
2h̄/π

β2h̄2 + |k1 − k0,1|2
∫
dX e−i(k1+k2−k0,1)·X/h̄ rE ,l (X )Yl ,m(X̂) , (48)

where the hat above the vector X indicates the direction of X, a shorthand used because the spherical
harmonic is a function only of the angles that give the orientation of X, and not the magnitude of
the vector. A larger hat is used over a combination of vectors to indicate that the spherical harmonic
is a function of the angles that orient the resulting vector, such as Yl,m( ̂p1 + p2). Also, in the above
expression we have separated out the angular and radial parts of the wavefunction,

ψ(x) = rE,l(X)Yl,m(X̂) , (49)

because the potential binding particle 2 to the origin is spherically symmetric. Note rE,l(X) is left
unspecified, and depends on the particular potential about the origin.

To finish the integration, we make use of the Bessel function expansion of the exponential,

e−i(k1+k2−k0,1)·X)/h̄ = 4π
∑

l′,m′

il
′

jl′ (|k1 + k2 − k0,1| X /h̄) Yl ′,m ′( ̂k1 + k2 − k0,1)

× Y ∗
l′,m′ (X̂) . (50)

Inserting this expansion into equation (48) and integrating over the angles of X eliminates the
spherical harmonics, producing a Kronecker δ, giving
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〈k
¯
|T βα|i〉 = (2πh̄)−3/2

∫
X 2dX

2/(h̄π)

β2 h̄2 + |k1 − k0,1|2
∑

l ′,m ′

i l
′

jl ′(|k1 + k2 − k0,1| X /h̄)

×Yl′ ,m′( ̂k1 + k2 − k0,1) δl′,lδm′,m rE,l(X) (51)

=
2/(h̄π)

β2h̄2 + |k1 − k0,1|2
il Yl,m( ̂k1 + k2 − k0,1)RE,l(|k1 + k2 − k0,1|) , (52)

where

RE,l(|k1 + k2 − k0,1|) = (2πh̄)−3/2

∫
dX X2 jl(|k1 + k2 − k0,1| X /h̄)rE ,l(X ) . (53)

4.3 Helicity Dependence in the First Born Approximation

The cross section in the first Born is given by

d3σ

dΩ1dΩ2dE1
=

16π4m3k1k2

k1,0
|〈k

¯
|T1|i〉|2 (54)

=
64π2m3k1k2/(k1,0h̄

2)

(β2h̄2 + |k1 − k0,1|2 )2
|Yl,m( ̂k1 + k2 − k0,1)|2RE,l(|k1 + k2 − k0,1|)2 .(55)

Note |Yl,m( ̂(k1 + k2 − k0,1))|2 does not depend on the sign of m. In this case, we take the
asymmetry between a positive value of m (particle 2 circulates in one direction) and a negative
value of m (particle 2 circulates the other way). From this we immediately find that

ASM =

d3σ
dΩ1dΩ2dE1 +

− d3σ
dΩ1dΩ2dE1 −

d3σ
dΩ1dΩ2dE1 +

+ d3σ
dΩ1dΩ2dE1 −

= 0 . (56)

There is no helicity asymmetry in this interaction, at least to the first approximation.

5 The Four Body Problem

Rather than continue to calculate the three body problem to greater orders of approximation, the
focus of the rest of the paper will be on investigating asymmetry in a problem analogous to the
scattering of polarized protons. This situation is that of scattering two bound states, each containing
angular momentum. The two bound states will be identical to each other, except that one may have
the opposite helicity of the other.

The four body problem mirrors the semi-classical problems already investigated for asymmetries,
and at first glance it seems that an asymmetry is expected. In order to begin the search, we first
specify the exact scattering model we will use, and the motivations for it.
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Figure 2: The model for the four body problem. The two bound states ψA and ψC have some initial
angular momentum, and VA and VC are the potentials binding each of the two states together. VB

acts between particles 1 and 3.

5.1 The Model

There are two important considerations in choosing a scattering model for the helicity study. The
first is to choose a model with enough of an analogy to the process of polarized proton-proton
collisions that any results can be taken to give reasonable qualitative predictions about that process.
The second consideration is to choose a model for which the cross section can be calculated with a
reasonable amount of effort.

For this model each bound state consists of a lighter particle bound to a heavier particle. The
lighter particles will interact within their bound state and with each other, while the heavier particles
will not interact between bound states. This picture is meant to evoke the scattering between two
partons, each with a small fraction of the overall momentum of the proton, and each bound to a
larger body of noninteracting partons. The reasoning behind this picture is that in high energy
proton-proton collisions, two of the partons can interact strongly, transferring a large amount of
momentum. When this occurs the two partons scatter at large angles, while the rest of each the
proton continues traveling in its original direction of motion, initially unaffected by the interaction.
Reference [6] gives an example discussion of the case of electron-proton collisions.

The less massive particle in each pair has mass m, and the larger mass is M . There are three
potentials to consider. VA binds the first pair of particles, particles 1 and 2. VC acts between the
second pair of particles, particles 3 and 4. 1 and 3 are the lighter particles, and they will interact
via a potential VB which will completely ignore particles 2 and 4. See Figure 2 for a schematic of
the interaction.

5.2 The Coordinate System

First we must define the relative coordinates for this system. They are

r1 = x2 − x1 , (57)

r2 = x4 − x3 , (58)
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R =
mx3 + Mx4 −mx1 −Mx2

m+M
, (59)

X =
mx1 + Mx2 + mx3 + Mx4

2(m+M)
. (60)

The conjugate momenta are

k1 =
mp2 −Mp1

m+M
, (61)

k2 =
mp4 −Mp3

m+M
, (62)

K = (p3 + p4 − p1 − p2)/2 , (63)

P = p1 + p2 + p3 + p4 . (64)

The potentials VA and VC act on the relative position coordinates of x2−x1 = r1 and x4−x3 =
r2, respectively. They have a natural representation in the set of momenta coordinates,

〈k1,k2,K,P|VA|k′
1,k

′
2,K

′,P′〉 = VA(k1,k
′
1)δ(k2 − k′

2)δ(K−K′)δ(P −P′) , (65)

〈k1,k2,K,P|VC |k′
1,k

′
2,K

′,P′〉 = VC(k2,k
′
2)δ(k1 − k′

1)δ(K−K′)δ(P−P′) . (66)

The potentials act only on the coordinate kets that they depend on, and ignore the other coordinates,
so that those kets form delta functions. Unfortunately the potential VB depends on the coordinate
x3−x1 = R+ M

M+m
(r1−r2), and so it has a more complicated representation in this set of momenta.

The representation is

〈k1,k2,K,P|VB|k′
1,k

′
2,K

′,P′〉 = VB(
m

m+M
K− (k2 − k1)/2 ,

m

m + M
K′ − (k′

2 − k′
1)/2 )

×δ( M

m+M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )

×δ(k1 + k2 − k′
1 − k′

2)δ(P−P′) . (67)

A complete derivation of this relation is given in Appendix A.

5.3 The Separable Potentials

In order to ease the difficulty of calculating the four body scattering asymmetry, mathematically
convenient potentials known as separable potentials will be used. Separable potentials have the form

〈r|V |r′〉 = − λ

2µ
〈r|g〉〈g|r′〉 (68)

= − λ

2µ
g(r)g∗(r′) (69)

where µ represents the reduced mass of the two body interaction. The potential in the position
representation does not contain a delta function δ(r− r′) and so is a nonlocal potential. A nonlocal
potential can act instantaneously, and so violates the tenants of relativity. However, as demonstrated
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by Yamaguchi [7], potentials of this form can be used to solve many scattering problems exactly, and
for the purpose of this paper will serve to make the equations tractable. Yamaguchi demonstrated
that the solutions given by this type of potential could indeed match nuclear scattering data very
well, and so they serve as a helpful tool for the study of quantum scattering.

The particular type of nonlocal, separable potentials studied here are the Yamaguchi form factors.
The following builds upon the equations and formalism presented in [7] and in [8]. The form factors
are

〈r|gl〉 =

(
i

2

)l
rl−1

l!
e−βr , (70)

where the case l = 0 gives the Yukawa potential. For our purposes we must include angular momen-
tum in the bound states, and so we consider these functions multiplied by the spherical harmonics,

〈r|gl〉 =

(
i

2

)l
rl−1

l!
e−βr Yl,m(r̂) . (71)

We will use the momentum representation of these for factors exclusively, and so we need to
Fourier transform them, again using the Bessel function expansion of the exponential,

〈p|gl〉 =

∫
dr〈p|r〉〈r|gl〉 (72)

= (2πh̄)−3/2

∫
dr

(
i

2

)l
r l−1

l !
e−βrYl ,m(r̂)e−ip·r (73)

=

√
2

π
h̄−3/2 (1/2)lYl,m(p̂)

∫
dr
rl+1

l!
e−βrjl(pr/h̄) (74)

= h̄−3/2 (1/2)lYl,m(p̂)

√
h̄

p

∫
dr
rl+1/2

l!
e−βrJl+1/2(pr/h̄) . (75)

The integral can be evaluated [9], using

∫ ∞

0

dre−βrJν(αr)rν =
(2α)νΓ(ν + 1/2)√
π(β2 + α2)ν+1/2

. (76)

Inserting this and evaluating, we finally have

〈p|gl〉 =

√
2h̄

π

h̄lplYl,m(p̂)

(h̄2β2 + p2)l+1
. (77)

The first case to consider is the potential VB . This is the interaction between particles 1 and 3,
for which we will use the simple case where l = 0, which just reduces to the Yukawa potential. It is
given as
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〈k1,k2,K,P|VB|k′
1,k

′
2,K

′,P′〉 = −λB

m
δ(P−P′)δ(k1 + k2 − k′

1 − k′
2)

×δ( M

m+M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )

×B(
m

m +M
K− (k2 − k1)/2 )

×B∗(
m

m+M
K′ − (k′

2 − k′
1)/2 ) , (78)

B(
m

m+M
K− (k2 − k1)/2 ) =

√
h̄/2

π

γ2h̄2 + | m
m+M K− (k2 − k1)/2 |2

, (79)

where γ has been used for the constant determining the characteristic range of VB .
The next step is to consider a potential that does contain angular momentum, and so we look at

the potential VA. Its matrix element is

〈k1,k2,K,P|VA|k′
1,k

′
2,K

′,P′〉 = −λA

2µ
δ(P−P′)δ(K−K′)δ(k2 − k′

2)

×
∑

m

Am(k1)A∗
m(k′

1) , (80)

Am(k1) =

√
2h̄

π
h̄lkl

1(k
2
1 + h̄2β2)−l−1Yl,m(k̂1) , (81)

µ =
Mm

m+M
. (82)

Now VC is identical to VA save that it acts only within its pair of particles, on coordinate k2.
So, its matrix element is

〈k1,k2,K,P|VC |k′
1,k

′
2,K

′,P′〉 = −λC

2µ
δ(P−P′)δ(K−K′)δ(k1 − k′

1)

×
∑

m

Cm(k2)C ∗
m(k′

2) , (83)

Cm(k2) =

√
2h̄

π
h̄lkl

2(k
2
2 + h̄2β2)−l−1Yl,m(k̂2) . (84)

It is important to note here that usually a separable potential supports only a single bound
state. The sum over different m quantum numbers here introduces a degeneracy which, as will
be shown below, allows us to have bound states with varying m quantum numbers arise from the
same interaction. This is crucial to studying collisions where the bound states have differing m.
The Am and Cm functions do not have coefficients in front of them simply because when they have
equal weight, the potentials are in a sense as spherically symmetric as they can be. There is no such
summation over different l quantum numbers, which means that there is only a single possible l state
for each separable potential. Since the investigation focuses on like and unlike helicity, determined
by the m quantum numbers, there is no issue with the inability to have bound states with differing
l arise from the same interaction.
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With these in hand, we can calculate the bound states, beginning with 〈k1|ψA〉. First we write
the Schröedinger Equation in the momentum representation, for a bound state,

〈k1|ψA〉 = ψA(k1) . (85)

The equation, with the bound state energy equal to −α2/2µ (the minus sign is required for a bound
state solution), is

k2
1

2µ
ψA(k1) +

∫
dk′

1〈k1|VA|k′
1〉ψA(k′

1) = −α
2

2µ
ψA(k1) . (86)

Rearranging and inserting our definition for the potential, the equation becomes

(k2
1 + α2)ψA(k1) = λA

2h̄(2l+1)

π

kl
1

(k2
1 + h̄2β2)l+1

∑

m

Yl,m(k̂1)

×
∫
dk′

1

k ′l
1

(k ′2
1 + h̄2β2 )l+1

Y ∗
l ,m(k̂′

1)ψA(k′
1) . (87)

The solution is

ψA(k1) = N
∑

m

am
kl
1 Yl,m(k̂1)

(k2
1 + h̄2β2)l+1(k2

1 + α2)
, (88)

where N is the normalization factor, given by

1

N2
=

∫ ∞

0

dp
p2(l+1)

(p2 + h̄2β2)2(l+1)(p2 + α2)2
, (89)

and the squares of the coefficients am sum to one,

∑

m

|am|2 = 1 . (90)

Inserting this solution into equation (87) both confirms that it is a solution and gives an expression
relating λA to α. Inserting, and integrating over the spherical harmonics to eliminate one summation,
we have

N
∑

m

am
kl
1 Yl,m(k̂1)

(k2
1 + h̄2β2)l+1

= N λA
2

π

kl
1

(k2
1 + h̄2β2)l+1

×
∑

m

am Yl,m(k̂1)

∫ ∞

0

dk1
k

2(l+1)
1

(k2
1 + h̄2β2)2(l+1)(k2

1 + α2)
. (91)

Cancelling from the right and the left sides, and rewriting the variable of integration, we see that
the condition that the equality holds is that
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π

2λA
=

∫ ∞

0

dp
p2(l+1)

(p2 + h̄2β2)2(l+1)(p2 + α2)
. (92)

This defines λA.
The relations for VC and it’s initial state hold in exactly the same way, with A being replaced by

C and k1 by k2. Since the bound states are identical but for a possible difference in the superposition
of states with differing m quantum numbers, the binding energies are equal and thus λA = λC .

The formula for 〈k2|ψC 〉 = ψC (k2) is then

ψC(k2) = N
∑

m

am
kl
2 Yl,m(k̂2)

(k2
2 + h̄2β2)l+1(k2

2 + α2)
. (93)

For the purpose of the discussion of helicity, we will imagine the m value of both ψA and ψC

are known, and will be equal to mA and mC , respectively. For like helicity collisions, we will use
mA = mC , and for unlike helicity collisions mA = −mC . However for generality these substitutions
will be delayed until the final calculations of helicity asymmetry. With this choice,

ψA(k1) = N
kl
1 Yl,mA

(k̂1)

(k2
1 + h̄2β2)l+1(k2

1 + α2)
≡ Rl(k1) Yl,mA

(k̂1) , (94)

ψC(k2) = N
kl
2 Yl,mC

(k̂2)

(k2
2 + h̄2β2)l+1(k2

2 + α2)
≡ Rl(k2) Yl,mC

(k̂2) , (95)

where the functions RA and RC are the “radial” portions of the wavefunction, those parts which
depend only on the magnitude of the momenta. This abbreviation makes the m dependence of each
of the initial state wavefunctions explicit.

5.4 The First Born Approximation

With the preliminaries in hand, we again use the first Born approximation to calculate the differential
cross section of the breakup interaction, and so determine the effects of helicity on the interaction.
Here, the series is essentially a power series in terms of the coupling constants divided by the
characteristic masses (either the masses of the particles or the appropriate reduced mass). The
size of this ratio determines how fast the series converges and how good the first terms are as an
approximation. Here we will let λi

m
<< 1 so that the series approximation is a good one.

For the breakup interaction, the matrix element at first order in the series is

〈k
¯
|T1|i〉 = 〈k

¯
|VB|i〉 . (96)

Inserting complete sets of states as appropriate, the T matrix element is

〈k
¯
|VB |i〉 =

∫
dk
¯
′〈k

¯
|VB |k

¯
′〉〈k′|i〉 (97)

= −λB

m
B(

m

m+M
K− (k2 − k1)/2 )

∫
dk′

1dk′
2dK′B∗(

m

m + M
K′ − (k′

2 − k′
1)/2 )
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×δ(k1 + k2 − k′
1 − k′

2)δ(
M

m + M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )

×〈k′
1,k

′
2,K

′,P|i〉 . (98)

Inserting the definition for the initial state,

〈k
¯
|VB |i〉 = −λB

m
B(

m

m+M
K− (k2 − k1)/2 )

∫
dk′

1dk′
2dK′B∗(

m

m + M
K′ − (k′

2 − k′
1)/2 )

×δ(k1 + k2 − k′
1 − k′

2)δ(
M

m + M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )

×δ(K′ −K0)δ(P −P0)ψA(k′
1)ψC (k′

2) . (99)

Resolving the delta functions in the primed variables by integrating over k′
1 and k′

2 we have

〈k
¯
|VB|i〉 = −λB

m
B(

m

m+M
K− (k2 − k1)/2 )δ(P−P0)

×
∫
dK′B∗(K′ − M

m + M
K− (k2 − k1)/2 )δ(K′ −K0)

×ψA(k1 +
M

m + M
(K′ −K)) ψC (k2 −

M

m + M
(K′ −K)) (100)

= −λB

m
δ(P−P0)B(

m

m + M
K− (k2 − k1)/2 )B∗(K0 −

M

m + M
K− (k2 − k1)/2 )

×ψA(k1 +
M

m + M
(K0 −K)) ψC (k2 −

M

m + M
(K0 −K)) . (101)

We also recognize at this point that the collision is occurring in the lab frame, so that P0 = 0 and
the delta function enforces P = 0 . There is no dependence on the total momentum in any of the
pieces, and so we can simply drop the delta function from further calculations. With this in hand,
we can calculate the helicity asymmetry in the First Born Approximation.

5.5 Helicity Asymmetry in the First Born Approximation

For this breakup problem, the most specific cross section that can be considered would be the
probability of finding one of the particles in a small differential unit of solid angle given the measured
positions and energies of the other three particles. This is our “most differential” cross section, and
in the case of taking say particle 1 as our particle of interest is it written as

d7σ

dΩ1dΩ2dE2dΩ3dE3dΩ4dE4
≡ Dσ

DΩ
∝ |〈k

¯
|T1|i〉|2 . (102)

We can immediately see that because of the square in this relationship, there is no helicity asymmetry
in the first Born approximation of the four body problem, because all of the dependence on mA and
mC is contained within the spherical harmonics, which are complex squared along with T , and the
square of the spherical harmonics does not depend on the sign of the m quantum number.

More specifically, the asymmetry calculation for like (mA = mC) versus unlike (mA = −mC )
helicity collisions is
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ASM =
Dσ
DΩ like

− Dσ
DΩ unlike

Dσ
DΩ like

+ Dσ
DΩ unlike

(103)

=
|〈k

¯
|T1|i〉|2like − |〈k¯|T1|i〉|2unlike

|〈k
¯
|T1|i〉|2like + |〈k

¯
|T1|i〉|2unlike

(104)

=
|ψA(k1)ψC (k2)|2like − |ψA(k1)ψC (k2)|2unlike

|ψA(k1)ψC (k2)|2like + |ψA(k1)ψC (k2)|2unlike

(105)

=
|Pl,|mA|(cosθk1

)Pl,|mA|(cosθk2
)|2 − |Pl,|mA|(cosθk1

)Pl,|−mA|(cosθk2
)|2

|Pl,|mA|(cosθk1
)Pl,|mA|(cosθk2

)|2 + |Pl,|mA|(cosθk1
)Pl,|−mA|(cosθk2

)|2 (106)

= 0 . (107)

Note that in the preceding calculation, the following were used

Yl,m(θ, φ) = (−1)(m+|m|)/2Pl,m(cosθ)eimφ , (108)

|Yl,m(θ, φ)|2 = |Pl,m(cosθ)|2 . (109)

Clearly to first order there is no difference in the measurable quantities between like and unlike
helicity collisions. However, the first Born term has ignored the effects of two of the three potentials
on the collision. It seems reasonable that to answer the question of helicity asymmetry for the four
body system, we need to move on to the next level of approximation. As such, we calculate the
second Born approximation.

5.6 The Second Born Approximation

For the second Born approximation, we must include the first and second terms, T1 and T2 of the
expansion (42). We have already calculated the matrix element of T1. The matrix element of T2 is
given for this interaction by

〈k
¯
|T2|i〉 = 〈k

¯
|VA G0 VB |i〉+ 〈k

¯
|VB G0 VB |i〉+ 〈k

¯
|VC G0 VB |i〉 . (110)

Here again G0 is the free Green’s operator, and it can be shown that

〈k1,k2,K,P|G0 |k′
1,k

′
2,K

′,P′〉 =
δ(k1 − k′

1) δ(k2 − k′
2) δ(K−K′) δ(P−P′)

z − T (k
¯
)

. (111)

Here in a confusing but standard notation the T (k
¯
) in the denominator represents the kinetic energy

of the four particles. It is not related to the T operator. It is

T (k1,k2,K,P) =
k2
1

2µ
+
k2
2

2µ
+

K2

m+M
+

P 2

2(m+M)
. (112)

Before plunging into the lengthy calculation of this second term, it is useful to get a picture in
mind of what is actually being calculated. T1 and each of the three terms in T2 can be thought of
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Figure 3: Four diagrams of the interactions represented by T1 and T2. The upper right interaction
is T1, while the other three are the three terms in T2.
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as particular interactions leading from the initial to the final state, whose contributions are then
summed over. A diagrammatic representation of each of these interactions is provided in Figure 3.

Resolving the free Green’s operator and inserting complete sets of states as necessary, we write

〈k
¯
|T2|i〉 = 〈k

¯
|VA G0 VB|i〉 + 〈k

¯
|VB G0 VB |i〉+ 〈k

¯
|VC G0 VB |i〉 (113)

=

∫
dk
¯
′dk

¯
′′〈k

¯
|VA|k

¯
′〉〈k

¯
′|G0|k

¯
′′〉〈k

¯
′′|VB|i〉+

∫
dk
¯
′dk

¯
′′〈k

¯
|VB|k

¯
′〉〈k

¯
′|G0|k

¯
′′〉〈k

¯
′′|VB |i〉

+

∫
dk
¯
′dk

¯
′′〈k

¯
|VC |k

¯
′〉〈k

¯
′|G0|k

¯
′′〉〈k

¯
′′|VB|i〉 (114)

=

∫
dk
¯
′ 〈k¯|VA|k

¯
′〉

z − T (k
¯
′)
〈k
¯
′|VB|i〉+

∫
dk
¯
′ 〈k¯|VB |k

¯
′〉

z − T (k
¯
′)
〈k
¯
′|VB|i〉+

∫
dk
¯
′ 〈k¯|VC|k

¯
′〉

z − T (k
¯
′)
〈k
¯
′|VB|i〉 (115)

= −λA

2µ

∑

m

Am(k1)

∫
dk′

1

A∗
m(k′

1)

z − T (k ′
1 , k2 ,K ,P)

〈k′
1,k2,K,P|VB|i〉

−λB

m
B(

m

m+M
K− (k2 − k1)/2 )

∫
dk′

1dk′
2dK′

B∗( m
m+M

K′ − (k′
2 − k′

1)/2 )

z − T (k ′
1 , k

′
2 ,K

′,P)

×δ(k1 + k2 − k′
1 − k′

2)δ(
M

m + M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )〈k′

1,k
′
2,K

′,P|VB |i〉

−λC

2µ

∑

m

Cm(k2)

∫
dk′

2

C ∗
m(k′

2)

z −T (k1 , k ′
2 ,K ,P)

〈k1,k
′
2,K,P|VB|i〉 . (116)

We will tackle each term separately, and then sum them together with the matrix element of T1

to arrive at the desired result. Inserting the result from the T1 term to resolve the bracket, equation
(101), the first piece is

〈k
¯
|VA G0 VB |i〉 = −λA

2µ

∑

m

Am(k1)

∫
dk′

1

A∗
m(k′

1)

z − T (k ′
1 , k2 ,K ,P)

〈k′
1,k2,K,P|VB|i〉 (117)

=
λAλB

2mµ

∑

m

Am(k1)ψC (k2 −
M

m + M
(K0 −K))δ(P0 −P)

×
∫
dk′

1

A∗
m(k′

1)

z − T (k ′
1 , k2 ,K ,P)

B(
m

m + M
K− (k2 − k′

1)/2 )B∗(K0 −
M

m + M
K− (k2 − k′

1)/2 )

× ψA(k′
1 +

M

m + M
(K0 −K)) . (118)

The goal now is to extract all information relating to helicity from the integral, and this is
contained within terms that depend on the sign of mA. So to continue we consider the integral
alone, with the primes removed for clarity,

∫
dk1

A∗
m(k1)

z − T (k1 , k2 ,K ,P)
B(

m

m + M
K− (k2 − k1)/2 )B∗(K0 −

M

m + M
K− (k2 − k1)/2 )

× ψA(k1 +
M

m + M
(K0 −K))

= 16N

√
2h̄

π
h̄l

∫
k2
1dk1

kl
1

(k2
1 + h̄2β2)l+1(z − T (k1, k2, K, P ))
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×
∫
sinθk1

dθk1
dφk1

|k1 − τ |lY ∗
l ,m(k̂1)Yl ,mA

( ̂k1 − τ )

(4h̄2γ2 + |k1 − ρ|2 )(4 h̄2γ2 + |k1 − σ|2 )(α2 + |k1 − τ |2 )(h̄2β2 + |k1 − τ |2 )l+1
,(119)

where

ρ = k2 −
2m

m + M
K , (120)

σ = k2 − 2K0 +
2M

m + M
K , (121)

τ = − M

m+M
(K0 −K) . (122)

Each term of the form |k1−p|2 can be expanded so that the dependence on k1 is separated out.
The expansion is

|k1 − p|2 = k2
1 + p2 − 2k1p cosΘk1,p , (123)

where Θk1,p is the angle between the two vectors and expands as

cosΘk1,p = cosθk1
cosθp + sinθk1

sinθpcos(φk1
− φp) . (124)

We must also break apart the spherical harmonic into parts that depend separately on each of the
vectors in its argument. This can be done using an expansion from the theories of bipolar spherical
harmonics. The formalism is drawn from [10]. The expansion is

|k1 − τ |lYl ,mA
( ̂k1 − τ ) =

√
4π(2l+ 1)!

∑

l1+l2=l

(−1)l2
kl1
1 τ

l2

√
(2l1 + 1)!(2l2 + 1)!

×
{
Yl1(k̂1)⊗Yl2( τ̂ )

}

l ,mA

, (125)

where

{
Yl1(k̂1)⊗Yl2( τ̂ )

}

l ,mA

=
∑

m1,m2

C l,mA

l1,m1,l2,m2
Yl1,m1

(k̂1)Yl2,m2
( τ̂ ) , (126)

and the C l,mA

l1,m1,l2,m2
are the Clebsch-Gordan Coefficients.

All together, the integral reduces to

= 16N

√
2h̄

π
h̄l

√
4π(2l + 1)!

∑

l1+l2=l

(−1)l2 τ l2

√
(2l1 + 1)!(2l2 + 1)!

∑

m1,m2

C l,mA

l1,m1,l2,m2
Yl2,m2

( τ̂ )

×
∫
dk1

kl+2
1 kl1

1

(k2
1 + h̄2β2)l+1(z − T (k1, k2, K, P ))

×
∫
sinθk1

dθk1
dφk1

Y ∗
l,m(k̂1)Yl1,m1

(k̂1)

(4h̄2γ2 + |k1 − ρ|2 )(4 h̄2 γ2 + |k1 − σ|2 )(α2 + |k1 − τ |2 )(h̄2β2 + |k1 − τ |2 )l+1
.(127)
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To make some headway we must here reduce the generality of the problem somewhat by choosing
values for the quantum numbers of interest. We will make the choice that the initial states ψA

and ψC have l = 1, and that for ψA, mA = 1. For ψC we choose mC = ±1, with the positive
value corresponding to the like helicity collision, and the negative value the unlike helicity collision.
Inserting these values, the integration over the φk1

coordinate can be accomplished in order to make
the dependence on the magnetic quantum number explicit. The integral can be done using contour
integration, and the details are presented in Appendix B. The integration reduces the entire first
piece to

〈k
¯
|VAG

0VB |i〉 = −λAλB

2mµ
ψC(k2 −

M

M + m
(K0 −K))δ(P0 −P)

∑

m

Am(k1)

×
∑

l1+l2=1

∑

m1,m2

C1,1
l1,m1,l2,m2

Yl2,m2
( τ̂ )IA,l1,l2,m,m1

(k2,K,K0) , (128)

where the other remaining integrals have been denoted as IA,l1,l2,m,m1
and the dependence on the

variousm quantum numbers is understood from the work in Appendix B. By inserting for the Clebsch
Gordon coefficients of interest we can resolve the summations. The Clebsch Gordon coefficients
vanish when the lower magnetic quantum numbers do not sum to give the upper magnetic quantum
number, in this case enforcing m1 + m2 = ±1. So the coefficients of interest to the problem (both
for work on this piece of the Born approximation and the fourth piece) are

C1,1
1,1,0,0 = 1 , (129)

C1,1
0,0,1,1 = 1 , (130)

C1,−1
1,−1,0,0 = 1 , (131)

C1,−1
0,0,1,−1 = 1 . (132)

Thankfully these are very simple coefficients. We need only the first two for this piece of the
Born approximation. The sums are resolved as

〈k
¯
|VAG

0VB |i〉 = −λAλB

2mµ
ψC(k2 −

M

M + m
(K0 −K))δ(P0 −P)

∑

m

Am(k1)

×
(

1√
4π
IA,1,0,m,1(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0(k2,K,K0)

)
. (133)

By the symmetries in the first and third pieces, I can immediately write the third term out. It is

〈k
¯
|VC G0 VB|i〉 =

λCλB

2mµ

∑

m

Cm(k2)ψA(k1 +
M

m + M
(K0 −K))δ(P0 −P)

×
∫
dk′

2

C ∗
m(k′

2)

z − T (k1 , k ′
2 ,K ,P)

B(
m

m + M
K− (k′

2 − k1)/2 )B∗(K0 −
M

m + M
K− (k′

2 − k1)/2 )

× ψC(k′
2 −

M

m + M
(K0 −K)) . (134)

The exact same series of steps as taken before apply to this piece, with the following substitutions
made,
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A → C , (135)

k1 → k2 , (136)

k2 → k1 , (137)

mA → mC , (138)

ρ → ζ = k1 +
2m

M + m
K , (139)

σ → ξ = k1 −
2M

M + m
K + 2K0 , (140)

τ → χ =
M

M +m
(K0 −K) . (141)

With these steps taken and the same integration from Appendix B as used before, the third piece
reduces to

〈k
¯
|VCG

0VB |i〉 = −λCλB

2mµ
ψA(k1 +

M

M + m
(K0 −K))δ(P0 −P)

×
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0)

+ Y1,±1( χ̂)IC,0,1,m,0(k1,K,K0)

)
(142)

Now, we calculate the second piece, which is

〈k
¯
|VB G0 VB |i〉 = −λB

m
B(

m

m +M
K− (k2 − k1)/2 )

∫
dk′

1dk′
2dK′

B∗( m
m+M

K′ − (k′
2 − k′

1)/2 )

z −T (k ′
1 , k

′
2 ,K

′,P)

×δ(k1 + k2 − k′
1 − k′

2)δ(
M

m + M
K + (k2 − k1)/2 − M

m + M
K′ − (k′

2 − k′
1)/2 )

×〈k′
1,k

′
2,K

′,P|VB|i〉 (143)

= −λB

m
B(

m

m +M
K− (k2 − k1)/2 )

×
∫
dK′

B∗(K′ − M
m+M

K− (k2 − k1)/2 )

z − P2 +4K ′2

4 (m+M) −
k2
1
+k2

2

2µ −
M

m+M
(K ′−K )( M

m+M
(K ′−K )+(k1−k2 )/2 )

µ

×〈k1 +
M

m + M
(K′ −K),k2 −

M

m + M
(K′ −K),K′,P|VB|i〉 . (144)

Using equation (101) with the appropriate substitutions to resolve the bracket,

〈k
¯
|VB G0 VB |i〉 =

λ2
B

m2
B(

m

m +M
K− (k2 − k1)/2 )B∗(K0 −

M

m + M
K− (k2 − k1)/2 )

×δ(P0 −P)ψA(k1 +
M

m + M
(K0 −K))ψC (k2 −

M

m + M
(K0 −K))

×
∫
dK′

|B(K′ − M
m+M

K− (k2 − k1)/2 )|2

z − P2 +4K ′2

4 (m+M) −
k2
1
+k2

2

2µ −
M

m+M
(K ′−K )( M

m+M
(K ′−K )+(k1−k2 )/2 )

µ

.(145)
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With all the pieces in hand, we are ready to construct the T matrix element. We first make the
substitutions

x = k1 +
M

m + M
(K0 −K) , (146)

y = k2 −
M

m + M
(K0 −K) . (147)

(148)

To clarify the asymmetry calculation to follow, we combine all quantities that do not depend on
the m quantum numbers into a function for each piece calculated above. In doing so, we use the
separation of initial state wavefunctions ψ into their “radial ” and angular parts. The definitions of
these m independent quantities are then

F1(k1,k2,K,K0) = −λB

m
B(

m

m+M
K− (k2 − k1)/2 )B∗(K0 −

M

m + M
K− (k2 − k1)/2 )

×RA(x)RC(y) , (149)

F2(k2,K,K0) = −λAλB

2mµ
RC(y) , (150)

F3(k1,k2K,K0) =
λ2

B

m2
B(

m

m+M
K + (k2 − k1)/2 )B∗(K0 −

M

m + M
K− (k2 − k1)/2 )

×RA(x)RC(x)

×
∫
dK′

|B(K′ − M
m+M

K− (k2 − k1)/2 )|2

z − P2+4K ′2

4 (m+M) −
k2
1
+k2

2

2µ −
M

m+M
(K ′−K )( M

m+M
(K ′−K )+(k1−k2 )/2 )

µ

,(151)

F4(k2,K,K0) = −λCλB

2mµ
RA(x) . (152)

We at this point again drop the delta function δ(P0 −P) from further calculations. Taking the
definitions above, the total on shell T matrix is

〈k
¯
|T1 + T2|i〉 = 〈k

¯
|VB |i〉+ 〈k

¯
|VA G0 VB |i〉+ 〈k

¯
|VB G0 VB |i〉+ 〈k

¯
|VC G0 VB |i〉 (153)

= Y1,1(x̂)Y1,±1(ŷ)F1(k1,k2,K,K0)

+Y1,±1(ŷ)F2(k2,K,K0)
∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0(k2,K,K0)

)

+Y1,1(x̂)Y1,±1(ŷ)F3(k1,k2,K,K0)

+Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0)

+ Y1,±1( χ̂)IC,0,1,m,0(k1,K,K0)

)
. (154)

5.7 Helicity Asymmetry in the Second Born

We recall that the differential cross section Dσ
DΩ discussed earlier is proportional to the square of the

T matrix element, which is denoted for brevity as |t|2 and is
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|t|2 = |Y1,1(x̂)Y1,±1(ŷ)|2(|F1(k1,K,K0)|2 + |F3 (k1,k2,K,K0)|2 )

+

∣∣∣∣Y1,±1(ŷ)F2(k2,K,K0)
∑

m

Am (k1)

(
1√
4π

)IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)∣∣∣∣
2

+

∣∣∣∣Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)∣∣∣∣
2

+Y1,1(x̂)Y1,±1(ŷ)F1(k1,K,K0)

×
{
Y1,±1(ŷ)F2(k2,K,K0)

∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0(k2,K,K0)

)

+Y1,1(x̂)Y1,±1(ŷ)F3(k1,k2,K,K0)

+Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)}∗

+Y1,±1(ŷ)F2(k2,K,K0)
∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)

×
{
Y1,1(x̂)Y1,±1(ŷ)(F1(k1,K,K0) + F3 (k1,k2,K,K0))

+Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)}∗

+Y1,1(x̂)Y1,±1(ŷ)F3(k1,k2,K,K0)

{
Y1 ,1 (x̂)Y1 ,±1(ŷ)F1 (k1,K,K0)

+Y1,±1(ŷ)F2(k2,K,K0)
∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)

+Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)}∗

+Y1,1(x̂)F4(k2,K,K0)
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)

×
{
Y1,±1(ŷ)F2(k2,K,K0)

∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1 ( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)

+Y1,1(x̂)Y1,±1(ŷ)(F1(k1,K,K0) + F3 (k1,k2,K,K0))

}∗

. (155)

With this we can calculate the asymmetry, where for like helicity collisions, we use the + case
in each ± and for unlike helicity we will use the − case in each ±. All of the terms that have no
helicity dependence are eliminated, and so the asymmetry is

ASM =
Dσ
DΩ like

− Dσ
DΩunlike

Dσ
DΩ like

+ Dσ
DΩunlike

(156)

=
|t|2like− |t|2unlike

|t|2like + |t|2unlike

(157)
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=

{
|Y1,1(x̂)F4(k2,K,K0)|2

×
[∣∣∣∣

∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,1(k1,K,K0) + Y1 ,1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)∣∣∣∣
2

−
∣∣∣∣
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,−1(k1,K,K0) + Y1 ,−1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)∣∣∣∣
2]

+2Re

[
Y1,1(x̂)F4(k2,K,K0)

×
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,1(k1,K,K0) + Y1 ,1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)

×
{
Y1,1(ŷ)F2(k2,K,K0)

×
∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)

+Y1,1(x̂)Y1,1(ŷ)(F1(k1,K,K0) + F3 (k1,k2,K,K0))

}∗

−Y1,1(x̂)F4(k2,K,K0)

×
∑

m

Cm(k2)

(
1√
4π

IC ,1 ,0 ,m ,±1(k1,K,K0) + Y1 ,±1 ( χ̂)IC ,0 ,1 ,m ,0(k1,K,K0)

)

×
{
Y1,−1(ŷ)F2(k2,K,K0)

×
∑

m

Am(k1)

(
1√
4π

IA,1 ,0 ,m ,1 ,0(k2,K,K0) + Y1 ,1( τ̂ )IA,0 ,1 ,m ,0 ,1(k2,K,K0)

)

+Y1,1(x̂)Y1,−1(ŷ)(F1(k1,K,K0) + F3 (k1,k2,K,K0))

}∗]}

×
(
|t|2like + |t|2unlike

)−1

. (158)

It is not obvious that the above asymmetry vanishes. In fact, given the character of the various
terms, especially of the various IA and IC terms, it would be very surprising if this asymmetry was
equal to zero. However, a rigorous investigation involving numerical approaches would be required
to calculate a few sample asymmetries and prove that the above asymmetry does not vanish in an
unexpected way.

6 Conclusions

There are two key conclusions to be had from the four body helicity asymmetry calculation. The
first is that there is in general a helicity asymmetry in the differential cross section of the breakup
scattering process. The second is that this asymmetry occurs at the second order of the Born
approximation.

With the assumption that our model can give us qualitative predictions about the collision of
polarized protons, we see that we expect a helicity asymmetry if the proton is made up of rotating
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constituents. In addition, we expect that this effect should be small compared to first order effects.
This prediction is complicated by the structure of the proton. For instance, quarks of different

flavors may have angular momentum directed in opposite directions, and the sea of virtual quarks
may not have any preferred direction at all. If any effect is to be found, collisions between different
flavors of quarks and between the valence and sea quarks must be separated out and investigated
independently. In addition to this are the gluons, which themselves may have angular momentum,
and make for even more possible interactions. On the other hand, if this separation can be accom-
plished, there is the possibility of using helicity asymmetries to probe the detailed structure of the
proton.

A group here at the University of New Mexico, led by Doug Fields, has investigated a specific
kind of helicity asymmetry in polarized proton-proton collisions, and these results are especially
interesting in light of their research [2]. The data used is that from the PHENIX detector at the
RHIC particle collider. This group has studied the momentum transverse to the beam direction in
both like and unlike helicity collisions. Due to conservation of momentum, it is not expected that
the jets produced in a hard scattering collision will have any total momentum transverse to the
beam direction. However, various effects contribute to an intrinsic transverse momentum in the jets.
As suggested by the semi-classical studies discussed earlier, the angular momentum of the partons
is one possible source. However, Fields and his group have found that there is no asymmetry in the
transverse momentum. This serves to confirm the prediction that any asymmetry would be a small
effect, and may even show that there is no net orbital angular momentum present in the proton.

Clearly we must be careful in making physical predictions. The nonrelativistic scattering process
described here is obviously very different from the relativistic, chromodynamical processes governing
the collision of two protons. Also, in order to make real statements about the predicted asymmetry
in transverse momentum, the cross sections presented in equation (158) must be integrated over
the variables that do not involve the transverse momentum, an effort which would itself demand
another study of similar length. Finally, all effects of spin have been neglected from this study. The
potentials selected were not spin dependent, and so neglecting spin makes no difference in the results;
however, since the strong interaction is spin dependent, further studies might use spin dependent
potentials to better model hard proton-proton scattering.

7 References

[1] P L Anthony et al. 1993. Phys. Rev. Letters 71, 959.
[2] D Fields. 2006. Proceedings of the 17th International Spin Physics Symposium, 634
[3] Meng Ta-chung et al. 1989. Phys. Rev. D 40, 769.
[4] Robert F Hobbs. 2006. Measuring Partonic Orbital Angular Momentum. Dissertation, The
University of New Mexico.
[5] John R Taylor. 2000. Scattering Theory, The Quantum Theory of Nonrelativistic Collisions

(Mineola, New York: Dover Publications, Inc.
[6] T T Chou and Chen Ning Yang. 1971. Phys. Rev. D 4 , 2005.
[7] Yoshi Yamaguchi. 1954. Phys. Rev. 95, 1628.
[8] H van Haerigen. 1985. Charged Particle Interactions, Theory and Formulas (Leyden, Nether-
lands: Coulomb Press).
[9] I S Gradshteyn, I M Ryzhik. Alan Jeffery, Editor. 1994. Table of Integrals, Series, and Products

(London, United Kingdom: Academic Press), 733.
[10] D A Varshalovich, A N Moskalev, V K Khersonskii. 1988. Quantum Theory of Angular Mo-

mentum (Singapore: World Scientific).

29



8 Acknowledgments

My greatest thanks go to Colston Chandler, who taught me the finer points of scattering theory,
demonstrated how to proceed with this project again and again, and who checked my work at every
step along the way. This thesis would not exist without his hard work and support. I must also
thank Douglas Fields for acting as my secondary advisor, for motivating this project in the first
place, and for allowing one of his undergraduate researches tackle this challenging problem. I want
to thank William Zimmerman for the use of his extensive library and resources on integration.
Colston Chandler, Douglas Fields, William Zimmerman, and John Ogren helped to proofread this
thesis, for which I am immensely grateful.

A The Coordinates of the Four Body Problem

In order to find the matrix element of VB in terms of the set of relative momenta k
¯
, we first consider

the matrix element of VB in position space in terms of the cartesian coordinates. VB acts between
particles 1 and 3. The potential is nonlocal, acts on the coordinates x3 − x1, but ignores the
coordinates x2 and x4. It must also leave the center of mass coordinate between particles 1 and
3, so that the combination (x1 + x3)/2 is ignored as well. Taking all this into account, the matrix
element in position space must look like

〈x
¯
|VB|x

¯
′〉 = δ(x2 − x′

2)δ(x4 − x′
4)δ(

x1 + x3

2
− x′

1 + x′
3

2
)

×VB(x3 − x1,x
′
3 − x′

1) . (159)

The next step is to consider the matrix element of VB in the usual set of momenta for each of
the four particles, {p1,p2,p3,p4}. This is given with the help of the position space representation,

〈p
¯
|VB|p

¯

′〉 =

∫
dx
¯
dx
¯
′〈p

¯
|x
¯
〉〈x

¯
|VB|x

¯
′〉〈x

¯
′|p
¯

′〉 (160)

= (2πh̄)−9

∫
dx
¯
dx
¯
′ei(p1·x1+p2·x2+p3 ·x3+p4·x4)/h̄

×δ(x2 − x′
2)δ(x4 − x′

4)δ(
x1 + x3 − x′

1 − x′
3

2
)VB (x3 − x1,x

′
3 − x′

1)

×e−i(p′

1
·x′

1
+p

′

2
·x′

2
+p

′

3
·x′

3
+p

′

4
·x′

4
)/h̄ . (161)

This simplifies more readily with a simple change of variables

y = x3 − x1 , (162)

z =
x1 + x3

2
, (163)

x1 = z − y/2 , (164)

x3 = z + y/2 , (165)

so that the matrix element is now
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〈p
¯
|VB |p

¯

′〉 = (2πh̄)−9

∫
dx2dx4dydzdx′

2dx′
4dy′dz′

× ei(p2·x2+p4·x4+(p1+p3)·z+(p3−p1)/2 ·y)/h̄

× δ(x2 − x′
2)δ(x4 − x′

4)δ(z− z′)VB (y,y′)

× e−i(p′

2
·x′

2
+p

′

4
·x′

4
+(p′

1
+p

′

3
)·z′+(p′

3
−p

′

1
)/2 ·y′)/h̄ (166)

= (2πh̄)−9

∫
dx2dx4dydzdy′VB(y,y′)

× ei((p2−p
′

2
)·x2+(p4−p

′

4
)·x4)/h̄

× ei((p1+p3−p′

1
−p′

3
)·z+(p3−p1−p′

3
+p′

1
)/2 ·y)/h̄ (167)

= (2πh̄)−3δ(p2 − p′
2)δ(p4 − p′

4)δ(p1 + p3 − p′
1 − p′

3)

×
∫
dydy′ei((p3−p1−p′

3+p′

1 )/2 ·y)/h̄VB (y,y′) . (168)

The last integral we recognize as the Fourier transform of VB(y,y′), which we will denote here simply

by VB(p3−p1

2
,
p′

3
−p′

1

2
). This also absorbs the extra factors of two, π and h̄. Section 5.3 carries out

this process explicitly. All together then the matrix element is

〈p
¯
|VB|p

¯

′〉 = δ(p2 − p′
2)δ(p4 − p′

4)δ(p1 + p3 − p′
1 − p′

3)

×VB(
p3 − p1

2
,
p′

3 − p′
1

2
) . (169)

The final step is of course to move from these momenta coordinates into the relative momenta.
For this we note that the relations between the p

¯
momenta and the k

¯
momenta are

p1 = −k1 +
m

2 (m + M )
(P− 2K) , (170)

p2 = k1 +
M

2 (m + M )
(P− 2K) , (171)

p3 = −k2 +
m

2 (m + M )
(P + 2K) , (172)

p4 = k2 +
M

2 (m + M )
(P + 2K) . (173)

Next, we note that by definition the bracket between the k
¯

momenta and the p
¯

momenta just
generates the delta functions that enforce the above relationships, so that the expansion of k

¯
into p

¯momenta looks like

|k1,k2,K,P〉 =

∫
dp
¯
δ(p1 + k1 −

m

2 (m + M )
(P− 2K))

×δ(p2 − k1 −
M

2 (m + M )
(P− 2K))

×δ(p3 + k2 −
m

2 (m + M )
(P + 2K))
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×δ(p4 − k2 −
M

2 (m + M )
(P + 2K))

×|p1,p2,p3,p4〉 . (174)

Using these expansions, it can be seen that the desired matrix element of VB in terms of the k
¯

momenta is the unsightly expression

〈k
¯
|VB|k

¯
′〉 = δ(k1 +

M

2 (m + M )
(P− 2K) − k′

1 −
M

2 (m + M )
(P′ − 2K′))

×δ(k2 +
M

2 (m + M )
(P + 2K) − k′

2 −
M

2 (m + M )
(P′ + 2K′)

×δ(−k1 − k2 +
m

m + M
P + k′

1 + k′
2 −

m

m + M
P′)

×VB (
m

m+M
K− k2 − k1

2
,

m

m + M
K′ − k′

2 − k′
1

2
) . (175)

There is only a single step separating this from the form quoted in section 5.2, equation (??).
We recognize at this point that the delta functions given here enforce the same set of relationships
as

δ(
M

m+M
K− (k2 − k1)/2 − M

m + M
K′ + (k′

2 − k′
1)/2 )

×δ(k1 + k2 − k′
1 − k′

2)δ(P−P′) , (176)

so we replace the first set of delta functions with this cleaner, more physically relevant set of delta
functions. This gives finally

〈k
¯
|VB |k

¯
′〉 = δ(

M

m+M
K− (k2 − k1)/2 − M

m + M
K′ + (k′

2 − k′
1)/2 )

×δ(k1 + k2 − k′
1 − k′

2)δ(P−P′)

×VB(
m

m+M
K− k2 − k1

2
,

m

m + M
K′ − k′

2 − k′
1

2
) . (177)

B The Contour Integral

The integral of interest, (119), with l = 1 and mA = 1 is

16N

√
2h̄

π
h̄
√

24π
∑

m

∑

l1+l2=1

(−1)l2τ l2

√
(2l1 + 1)!(2l2 + 1)!

∑

m1,m2

C1,1
l1,m1,l2,m2

Yl2,m2
( τ̂ )

×
∫
dk1

kl+2
1 kl1

1

(k2
1 + h̄2β2)2(z − T (k1, k2, K, P )

×
∫
sinθk1

dθk1
dφk1

Y ∗
1,m(k̂1)Yl1,m1

(k̂1)

(α2 + |k1 − τ |2 )(h̄2β2 + |k1 − τ |2 )2 (4 h̄2γ2 + |k1 − ρ|2 )(4 h̄2 γ2 + |k1 − σ|2 )
.(178)
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Now recalling the definitions of each vector and the expansions of the squares of the differences
in each vector, we define the following constants,

C1 = α2 + k2
1 + τ2 − 2k1τcosθk1

cosθτ , (179)

C2 = −2k1τsinθk1
sinθτ cosφτ , (180)

C3 = −2k1τsinθk1
sinθτ sinφτ , (181)

C4 = β2 + k2
1 + τ2 − 2k1τcosθk1

cosθτ , (182)

C5 = β2 + k2
1 + ρ2 − 2k1ρcosθk1

cosθρ , (183)

C6 = −2k1ρsinθk1
sinθρcosφρ , (184)

C7 = −2k1ρsinθk1
sinθρsinφρ , (185)

C8 = β2 + k2
1 + σ2 − 2k1σcosθk1

cosθσ , (186)

C9 = −2k1σsinθk1
sinθσcosφσ , (187)

C10 = −2k1σsinθk1
sinθσsinφσ . (188)

With these substitutions, we can isolate the integration over φk1
. By recalling again that

Yl,m(θ, φ) = (−1)(m+|m|)/2Pl,m(cosθ)eimφ , (189)

we factor the associated Legendre polynomials out of the φk1
integral, and write it as

∫ 2π

0

dφk1

ei(m1−m)φk1

(C1 + C2cosφk1
+C3sinφk1

)(C4 +C2cosφk1
+C3sinφk1

)2(C5 + C6cosφk1
+C7sinφk1

)

× 1

(C8 + C9cosφk1
+C10sinφk1

)
.(190)

This integral can be integrated by transforming it into a contour integral. The following substi-
tutions are made,

eiφk1 = z , (191)

dφ = −iz−1dz , (192)

cosφk1
=

z + z−1

2
=
z2 + 1

2z
, (193)

sinφk1
=

z − z−1

2i
==

z2 − 1

2iz
. (194)

With these substitutions, we see that as φk1
ranges between 0 and 2π, our new variable of

integration traces out the unit circle in the complex plane. Thus the integral is now a contour
integral,

−25i

∫

C

dz
z4zm1−m

((C2 − iC3)z2 + 2C1z + (C2 + iC3))((C2 − iC3)z2 + 2C4z + (C2 + iC3))2

× 1

((C6 − iC7)z2 + 2C5z + (C6 + iC7))((C9 − iC10)z2 + 2C8z + (C9 + iC10))
. (195)
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The problem is now reduced to finding the poles of this equation, so that it can be evaluated in
terms of the sum of the residues inside the unit circle. Taking as an example the first of the four
second order polynomials that can be identified in the denominator, the quadratic formula gives the
roots,

z1± =

{
C1√

C2
2 + C2

3

∓
√

C2
1

C2
2 +C2

3

− 1

}
eiφτ , (196)

Where the definitions of the Ci have been utilized to reduce this result into the given polar
format. To see where these roots lie, we first recognize that

C1√
C2

2 +C2
3

> 1 . (197)

This can be proven by using the definitions of the Ci and showing that the numerator is always
greater than the denominator. The following chain of inequalities proves the relation, inserting for
C1, C2 and C3,

C2
1 −C2

2 −C2
3 = (α2 + k2

1 + τ2)2 − 4(k2
1 + τ2)k1τcosθk1

cosθτ + 4k2
1τ

2cos2θk1
cos2θτ

−4k2
1τ

2sin2θk1
sin2θτ (198)

> (k2
1 + τ2)2 − 4(k2

1 + τ2)k1τcosθk1
cosθτ + 4k2

1τ
2cos2θk1

cos2θτ

−4k2
1τ

2sin2θk1
sin2θτ (199)

≥ (k2
1 + τ2)2 − 4(k2

1 + τ2)k1τ + 4k2
1τ

2 (200)

= (k1 − τ )4 (201)

≥ 0 , (202)

and so giving

C2
1 > C2

2 + C2
3 . (203)

The only real difficulty is in the relationship between equations (199) and (200). This relationship
can be proven by showing that the minima of the second line of the chain is given by {θk1

, θτ} = {0, 0}
and {π, π} by differentiating first with respect to θk1

to find its extrema, and then by θτ to find
its extrema. Where these coincide, the function overall has either a minimum, maximum, or saddle
point. The two equations that must be satisfied are

4(k2
1 + τ2)k1τsinθk1

cosθτ − 8k2
1τ

2sinθk1
cosθτ = 0 , (204)

4(k2
1 + τ2)k1τsinθτ cosθk1

− 8k2
1τ

2sinθτ cosθk1
= 0 . (205)

The two equations are simultaneously satisfied at the points {θk1
, θτ} = {0, 0}, {π/2, π/2}, {π, π}.

Further investigation reveals that the {π/2, π/2} represents a maximum, while the other two repre-
sent minima. The exception to this is when k1 = τ , when the entire line θk1

= θτ is a solution, but
one which gives C2

1 − C2
2 − C2

3 = α2 > 0 in any case, holding the relation given by the inequality
chain.
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The boundaries of course must be checked, and for these the final result of the inequality chain
still holds, but line three of the relation does not necessarily hold along the boundaries. We begin by
investigating the partial derivatives given above with one or the other θ coordinate set to a constant
along the boundary. This again gives three possible solutions: the two end points of the boundary
segment, and an intermediate point that is given by one angle set at π or 0 and the other at

cosθ = ±k
2
1 + τ2

2k1τ
, (206)

where the positive case corresponds to the two boundaries for which one of the θ coordinates equals
zero and the minus where one of the θ coordinates equals π.

This adds the points {θk1
, θτ} = {0, π}, {π, 0} and the intermediary points to our consideration.

For the corner points we find

C2
1 −C2

2 −C2
3 = (α2 + k2

1 + τ2) + 4(k2
1 + τ2)k1τ + 4k2

1τ
2 (207)

> (k1 + τ )4 (208)

≥ (k1 − τ )4 (209)

≥ 0 , (210)

so that the full relation holds. For the four intermediate points we find

C2
1 − C2

2 − C2
3 = (α2 + k2

1 + τ2)2 − 2(k2
1 + τ2)2 + (k2

1 + τ2)2 (211)

> 2(k2
1 + τ2)2 − 2(k2

1 + τ2)2 (212)

= 0 . (213)

Thus, C2
1 − C2

2 − C2
3 is always greater than zero.

With the fact that the leading term of the root in equation (196) is always greater than one, we
see that the midpoint between the two roots lie outside the contour. Thus the larger root, z1− lies
outside the contour. It turns out that the other root, z1+ must always lie inside the contour. To see
this is so, we consider the function

f(x) = x−
√
x2 − 1 , (214)

which describes the position of the z1− root and is always less than 1 when x > 0, and we have
already shown that x > 0. All the roots are found in the same way, and so we find that there are
four poles inside the contour, three simple and one that is a second order pole. With the roots in
hand, the integral can immediately be evaluated using the residue theorem. The other poles are

z2± =

{
C4√

C2
2 + C2

3

∓
√

C2
4

C2
2 +C2

3

− 1

}
eiφτ , (215)

z3± =

{
C5√

C2
6 + C2

7

∓
√

C2
5

C2
6 +C2

7

− 1

}
eiφρ , (216)

z4± =

{
C8√

C2
9 + C2

10

∓
√

C2
8

C2
9 + C2

10

− 1

}
eiφσ . (217)
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The integral can be rewritten in terms of it’s roots,

−25i

∫

C

F (z) =
−25i

(C2 − iC3)3(C6 − iC7)(C9 − iC10)

×
∫

C

z4zm1−m

(z − z1+)(z − z1−)(z − z2+)2(z − z2−)2

× 1

(z − z3+)(z − z3−)(z − z4+)(z − z4−)
, (218)

and it can be evaluated using the residue theorem,

−25i

∫

C

F (z) = 26π
∑

(residues) . (219)

Now the residues must be found. The residues from the simple poles are easiest to find, and
using the factored form of F (z) we see that they are

(res)1 =
z4zm1−m

(z − z1−)(z − z2+)2(z − z2−)2(z − z3+)(z − z3−)(z − z4+)(z − z4−)

∣∣∣∣z=z1+ , (220)

(res)3 =
z4zm1−m

(z − z1+)(z − z1−)(z − z2+)2(z − z2−)2(z − z3−)(z − z4+)(z − z4−)

∣∣∣∣z=z3+ , (221)

(res)4 =
z4zm1−m

(z − z1+)(z − z1−)(z − z2+)2(z − z2−)2(z − z3+)(z − z3−)(z − z4−)

∣∣∣∣z=z4+ . (222)

The final residue is

(res)2 = 2
d

dz
((z − z2+)2F (z))|z2+

(223)

= 2(z2+)3+m1−m (4 +m1 −m)D(z2+)− z2+ d/dz(D(z))|z=z2+

D(z2+)2
, (224)

D(z) = (z − z1+)(z − z1−)(z − z2−)2(z − z3+)(z − z3−)(z − z4+)(z − z4−) , (225)

with the indicated derivative of the denominator being understandably lengthy enough not to merit
writing it fully here.

Finally, we have that the φk1
integral is

26π((res)1 + (res)2 + (res)3 + (res)4)

(C2 − iC3)3(C6 − iC7)(C9 − iC10)
≡ fm1−m(k1, θk1

,k2,K,K0) . (226)

Where we have defined a shorthand for this piece of the overall integral, and it is important to
note the dependence of the integral on m1−m, which is key in investigating the helicity asymmetry
further on.

Going back to the original integral, inserting for the completed φk1
integration, we have
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16N

√
2h̄

π
h̄
√

24π
∑

m

∑

l1+l2=1

∑

m1,m2

C1,1
l1,m1,l2,m2

(−1)(m+|m|+m1+|m1|)/2+l2τ l2

√
(2l1 + 1)!(2l2 + 1)!

Yl2,m2
( τ̂ )

×
∫
dk1

kl+2
1 kl1

1

(k2
1 + h̄2β2)2(z − T (k1, k2, K, P )

×
∫
sinθk1

dθk1
dφk1

P1,|m|(θk1
)Pl1,|m1|(θk1

)fm1−m(k1, θk1
,k2,K,K0) (227)

≡
∑

m

∑

l1+l2=1

∑

m1,m2

C1,1
l1,m1,l2,m2

Yl2,m2
( τ̂ )IA,l1,l2,m,m1

(k2,K,K0) , (228)

Where IA,l1,l2,m,m1
has been defined as a term dependent on m1 −m, and that is a function of

the given coordinates.
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