SSA Measurements with Primary Beam at J-PARC

Joint UNM/RBRC Workshop on “Orbital Angular Momentum” in Albuquerque
February 25th, 2006
Yuji Goto (RIKEN/RBRC)
Outline

• Introduction
 – J-PARC
 – spin physics with primary beam at J-PARC
• Drell-Yan experiment
• SSA measurements
• Summary
J-PARC at Tokai

KAMIOKA

295 km

1 hour

NARITA

TOKYO

KEK

Tsukuba

JAERI

JAEA

Tokai
J-PARC facility

Materials and Life Science Experimental Facility

Hadron Beam Facility

Nuclear Transmutation

Neutrino to Kamiokande

Linac (330m)

3 GeV Synchrotron (25 Hz, 1MW)

50 GeV Synchrotron (0.75 MW)

J-PARC = Japan Proton Accelerator Research Complex

Joint Project between KEK and JAEA
J-PARC facility

- The budget for about 2/3 of the entire project has been approved by the Japanese government from JFY2001 as Phase 1
- Phase 1 consists of major accelerator components and a part of experimental facilities

![Diagram of J-PARC facility]
J-PARC parameters

– numbers in parentheses are for the phase 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy:</td>
<td>50 GeV</td>
</tr>
<tr>
<td></td>
<td>(30 GeV for Slow Beam)</td>
</tr>
<tr>
<td></td>
<td>(40 GeV for Fast Beam)</td>
</tr>
<tr>
<td>Repetition:</td>
<td>3.4 ~ 5-6 sec</td>
</tr>
<tr>
<td>Flat Top Width:</td>
<td>0.7 ~ 2-3 sec</td>
</tr>
<tr>
<td>Beam Intensity:</td>
<td>3.3x10^{14} ppp, 15 mA</td>
</tr>
<tr>
<td></td>
<td>(2x10^{14} ppp, 9 mA)</td>
</tr>
<tr>
<td>Beam Power:</td>
<td>750 kW</td>
</tr>
<tr>
<td></td>
<td>(270 kW)</td>
</tr>
<tr>
<td>Linac Energy:</td>
<td>$E_{\text{Linac}} = 400 \text{ MeV}$</td>
</tr>
<tr>
<td></td>
<td>(180 MeV)</td>
</tr>
</tbody>
</table>
J-PARC schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Linac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bldg. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bldg. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bldg. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials + Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bldg. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear-Particle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bldg. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam test + User access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam test + User access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaelogical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Farms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Now</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Call for proposals started: deadline April 28, 2006

First beam for the nuclear-particle experiments in JFY2008

First beam for the neutrino experiments in JFY2009
J-PARC facility

September, 2005

Hadron Experimental Facility

Number of Users: about 600
(about 1/3 from Japan)
Hadron experimental hall (phase 1)

beamlines for secondary beam experiments at the beginning of the phase 1

Experimental Area

A-Line

Test Beam

K1.8BR

K1.8

K1.1/0.8 (S-type)

K1.1/0.8 (C-type)

area for primary beam experiments

Beam Dump

(on the guide rail for Phase 2)
Introduction

- **Origin of the nucleon spin 1/2?**
 \[
 \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta g + L
 \]
 - polarized DIS experiments showed the quark-spin contribution is only 10-30%
 - gluon-spin contribution?
 - orbital angular momentum?

- **Scaling violation in polarized DIS**

 SMC: \(\Delta g(Q^2 = 1 \text{ GeV}^2) = 0.99^{+1.17}_{-0.31} \text{(stat)}^{+0.42}_{-0.22} \text{(syst)}^{+1.43}_{-0.45} \text{(th)} \)

 E155: \(\Delta g(Q^2 = 5 \text{ GeV}^2) = 1.6 \pm 0.8 \text{(stat)} \pm 1.1 \text{(syst)} \)

Introduction

• Semi-inclusive DIS
 – high-p_T hadron pairs
 – open charm production

COMPASS high p_T hadron pairs
($Q^2 < 1\text{(GeV/c)}^2$)
$\Delta G/G = 0.024 \pm 0.089\text{(stat)} \pm 0.057\text{(syst)}$
at $x_g = 0.095 (\mu^2 \sim 3\text{(GeV/c)}^2)$
Introduction

- Present target at RHIC – gluon-spin contribution
 - polarized hadron collision
 - leading-order gluon measurement

![Diagram](image)

- Direct photon production
- Heavy-flavor production
Introduction

- Gluon contribution – PHENIX A_{LL} of π^0

 - PHENIX official statement
 - conclusively excludes GRSV maximal scenario
 - consistent with GRSV standard and GRSV $\Delta g=0$ input scenarios

 - Personal statement
 - \sim1-sigma region: $\Delta g < 0.4$
 - orbital angular momentum measurements should be developed for the final solution

GRSV-max: $\Delta g = 1.84$

GRSV-std: $\Delta g = 0.42$

at $Q^2=1(\text{GeV}/c)^2$

best fit to DIS data
Introduction

- **Orbital angular momentum**
 - hint in hadron reactions

Fermilab E704: $E_{\text{lab}} = 200$ GeV

STAR at RHIC: $\sqrt{s} = 200$ GeV

- asymmetries in angular distribution of semi-inclusive hadron production at polarized DIS exps
Drell-Yan experiment

- Fermilab E866/NuSea and E906 at MI
 - closed geometry

Fermilab $E_{lab} = 800$ GeV
2×10^{12} protons / 20 sec
Drell-Yan experiment

- Ratio of p+d cross section to p+p ↔ d-bar/u-bar

CTEQ4M
CTEQ5M
GRV98
MRST

"CTEQ4M (d - u = 0)"

FNAL E866/NuSea Drell-Yan

sigma_{pd}/sigma_{pp}

E866 Data 800 GeV
Main Injector 120 GeV
JHF 50 GeV

1% Systematic error not shown
Experimental apparatus

- Two vertically bending magnets with p_T kick of 2.47 GeV/c and 0.5 GeV/c
- Closed geometry
- Tracking is provided by three stations of MWPC and drift chambers
- Muon ID and tracking are provided
- 2×10^{12} 50 GeV p/spill
- Based on the Fermilab spectrometer for 800 GeV, the length can be reduced but the aperture has to be increased

Schematic view in horizontal plane

Tapered copper beam dump and Cu/C absorbers placed within the first magnet
Simulation studies

- Expected Drell-Yan counts for a two-month p+d run at 50 GeV
 - 2×10^{12} protons/spill
 - 50-cm long liquid deuterium target
 - assume 50 percent overall efficiency
Possible layout of the hadron hall
Drell-Yan experiment

- \(A_{LL} \rightarrow \) sea quark polarization

![Diagram showing chiral quark soliton model prediction and 120-day run results](image)
SSA on Drell-Yan

- no final-state effect
- sensitive to Sivers effect at low q_T: $q_T \ll Q$

![Graph of Drell-Yan A_N at JPAC Energy](image)

Sivers function fit from Vogelsang & Yuan: PRD 72, 054028 (2005).
(from Xiangdong Ji’s slide at J-PARC hadron structure workshop at KEK, December, 2005)
SSA on Drell-Yan

– sensitive to higher-twist effect at high q_T: $\Lambda_{QCD} \ll q_T$

(from Xiangdong Ji’s slide at J-PARC hadron structure workshop at KEK, December, 2005)
SSA measurement of pions

- Forward pions with a polarized target
 - backward $A_N(x_F < 0)$
 - sensitive to the gluon Sivers effect at fixed-target exp. energies
 - not very sensitive at collider energies

$E_{lab} = 200 \text{ GeV } \sqrt{s} = 19.4 \text{ GeV}$

RHIC: $\sqrt{s} = 200 \text{ GeV}$

SSA measurement of pions

- **Forward pions with a polarized target**
 - start with simple forward spectrometer with some particle-ID detectors
 - EM calorimeter for π^0

- **Forward pions with a polarized beam**
 - forward $A_N(x_F > 0)$
 - confirmation of E704 asymmetries at smaller energies
 - BNL-E925 at $E_{lab} = 22$ GeV confirmed for charged pions
 - p_T dependence will give more information
SSA measurement of D-mesons

- gluon fusion or quark-pair annihilation
- no single-spin transfer to the final state
- sensitive to initial state effect: Sivers effect
 - to be measured at RHIC: PHENIX with silicon upgrade (2009)
- collider energies: gluon-fusion dominant
 - sensitive to gluon Sivers effect
- fixed-target energies: quark-pair annihilation dominant
 - sensitive to quark Sivers effect
- complementary

J-PARC: $E_{lab} = 50$ GeV

RHIC: $\sqrt{s} = 200$ GeV

D-meson

– cross section

• PYTHIA (6.228) study with PHENIX tune ($\langle k_T \rangle = 1.5 \text{ GeV}/c$, $M_c = 1.25 \text{ GeV}/c^2$, K-factor = 3.5, $Q^2 = s$)

• J-PARC: 3-4 order smaller cross section than that at RHIC
 – can be compensated by higher intensity/luminosity at J-PARC?
D-meson

- silicon detectors to identify second decay vertex
- yield study
 - 10^9 proton/sec beam
 - 10% target
 - 2×10^{33} cm$^{-2}$sec$^{-1}$
 - \times 1 week = 10^3 pb$^{-1}$
 - acceptance 0.05 – 0.3 to cover forward/mid-rapidity/backward

\[
\begin{align*}
D^0 \text{ yield} \\
1.5 \text{ GeV/c}
\end{align*}
\]

\[
\begin{align*}
p_T > 1.5 \text{ GeV/c} \\
5.5 \times 10^6 D^0 \text{ for } 10^3 \text{ pb}^{-1}
\end{align*}
\]
D-meson

- efficiency study necessary
 - decay
 - DCA cut efficiency
- detector study necessary
 - radiation hardness
 - D-meson identification: $\Delta E/E$ in silicon?
 - triggering
- beam intensity / luminosity as high as possible
 - depending on radiation hardness of detectors, occupancy/multi-collision capability, etc.
Other SSA measurements

• Charmonium
 – J/ψ and χ_c

• The most forward neutron
 – found at RHIC $\sqrt{s} = 200$ GeV
 – zero-degree calorimeter
 – large asymmetries in collider energies
 • $A_N \sim -12\%$ at $x_F > 0.2$ and $p_T < 0.3$ GeV/c at RHIC
 – physics implication?
Other subjects

• Gluon polarization at large-x
 – charmonium A_{LL}
 • J/ψ, χ_{c0}, χ_{c1}, χ_{c2}
 • χ_{c2}: gluon-fusion dominant
 – produced mainly from helicity ± 2 state of the gluon fusion
 – sensitive to $\Delta g(x)$
 • identified measurement is possible only in the fixed-target experiments
 – low photon energy of $\chi_c \rightarrow \gamma + J/\psi$ decay
 – direct-photon A_{LL}

• Transversity
 – Drell-Yan A_{TT}

• “Fields” effect
 – Drell-Yan $A_{LL}(q_T)$
Under discussion

• Polarized proton acceleration
 – study group was formed
 – installation of Siberian snakes seems possible
 – technical note in preparation

• Polarized target

• More discussion consideration and R&D
 – Drell-Yan apparatus +
 – silicon detector
 – calorimeter
Detector

- NA60 spectrometer
 - example of silicon spectrometer + muon detector
 - charm-identification with muon-coincidence

CERN

$E_{\text{lab}} = 158$ GeV

2×10^9 protons / 5 sec
Detector

• PHENIX upgrades
 – technically important
 – silicon pixel & strip (stripixel) 2008 installation
 • RIKEN/RBRC group is leading
 – Si/W calorimeter
 • RIKEN/RBRC group is participating and supporting
Summary

• For the spin physics program with primary beam at J-PARC, study group for the polarized proton acceleration and the physics experiment were formed, and discussions are underway.

• Measurement of the orbital angular momentum component in the nucleon is one of the most important goal of the spin physics program at J-PARC.

• Drell-Yan experiments are planned
 – SSA measurements of Drell-Yan, pions, D-mesons, etc.
 – gluon polarization at large-x, transversity, etc.

• Physics and detector studies are ongoing.

• Collaboration with many groups in the world is very important.