24.8 We are looking for angles with little or no wave action in a situation with two slits:
interference minima.

\[d \sin \theta = (m + \frac{1}{2}) \lambda \]

interference condition

\[d = 5.0 \text{ cm} \quad \lambda = 2.5 \text{ cm} \quad \frac{\lambda}{d} = 0.5 \]

First minimum: \(m = 0 \)

\[\sin \theta = (0 + \frac{1}{2}) \frac{2.5 \text{ cm}}{5.0 \text{ cm}} \]

\[\theta = 14.5^\circ \]

Second minimum: \(m = 1 \)

\[\sin \theta = (1 + \frac{1}{2}) \frac{2.5 \text{ cm}}{5.0 \text{ cm}} \]

\[\theta_2 = 48.6^\circ \]

Third minimum: \(m = 2 \)

\[\sin \theta = (2 + \frac{1}{2}) \frac{2.5 \text{ cm}}{5.0 \text{ cm}} \]

\[\sin \theta = 1.25 \]

No solution for \(\theta \)

24.116 The red and blue beams can be treated separately.
Reading the plot on p. 672, \(n_{\text{blue}} = 1.64 \), \(n_{\text{red}} = 1.62 \)

Blue:

\[\theta_1 = 45.0^\circ \quad n \sin \theta_1 = n_x \sin \theta_x \]

\[1.0 \sin 45^\circ = 1.64 \sin \theta_x \]

\[\theta_x = 25.6^\circ \]

\[90 - \theta_2 + 60 + 90 - \theta_3 = 180 \]

\[\theta_3 = 34.5^\circ \]

\[n_x \sin \theta_3 = n_4 \sin \theta_4 \]

\[\theta_4 = 68.1^\circ \quad \text{"} \theta_x \text{"} \]
Red:
\[\theta_1 = 45.0^\circ \]
\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]
\[1.0 \sin 45^\circ = 1.62 \sin \theta_2 \]
\[\theta_2 = 25.9^\circ \]
\[90 - \theta_2 + 90 - \theta_3 + 60 = 180 \]
\[\theta_3 = 34.1^\circ \]
\[n_3 \sin \theta_3 = n_4 \sin \theta_4 \]
\[\frac{\theta_4}{10} = 65.3^\circ \]
\[\theta_0^\circ \]

24.26 For a given \(\lambda \), what is \(D_{\text{max}} \) so that there are no minima from diffraction?

First diffraction minimum:
\[D \sin \theta = m \lambda = (1) \lambda \]
\[\sin \theta = \frac{\lambda}{D} \]

In order to see no minima, \(\theta \geq 90^\circ \)
\[\sin \theta = 1 = \frac{\lambda}{D} \]
\[D_{\text{max}} = \lambda \]
24.53 At the first polarizer, the unpolarized light loses 50% of its intensity and takes on the first filter’s polarization.

At the second filter, the intensity is reduced by
\[\cos^2 65^\circ = 0.179 \text{ transmitted} \]

\[I_0 = 2I_1 \]
\[I_2 = 0.179I_1 \]
\[I_2 = 0.0893I_0 \]

24.58 At the first filter, the intensity is reduced by \(\cos^2 \theta \), where \(\theta \) is the angle between the incident polarization \(P_0 \) and the filter polarization \(P_1 \). At the second filter, the reduction is to \(\cos^2 46^\circ = 0.587 \).

\[I_1 = I_0 \cos^2 \theta \]
\[I_2 = I_1 \cos^2 46^\circ = I_1 (0.587) \]
\[I_2 = I_0 \cos^2 \theta (0.587) \]

\(\frac{I_2}{I_0} = 0.15 = \cos^2 \theta (0.587) \)

\[\theta = 59.6^\circ \]