Physics 262 Exam 3

Please answer any four of the following five questions. Each question is worth five points. Partial credit will be awarded for any **attempted** problem.

1. An object is placed 5 cm in front of an $f_1 = 3 cm$ converging lens and $f_2 = -4 cm$ diverging mirror combination. If the lens and the mirror are 6 cm apart, use the thin-lens and mirror equations to find the location of the image created by the mirror. Is this image real or virtual?

Mirror: $\frac{1}{S_2} + \frac{1}{S_2} = \frac{1}{4} \Rightarrow \frac{1}{1.5} + \frac{1}{S_2} = \frac{1}{4} \Rightarrow \frac{1}{1.5} = \frac{5}{17}$

Si>O => REAl image => 2.4cm to left

of Mirror OR 3. Com to right of lens

2. In a variation on Young's double-slit experiment, a $\pi/6$ "phase shifter" is placed in front of the lower slit. A phase shifter is a device that allows light to pass thorough it, and upon exiting the electric field's phase is increased by, here, $\pi/6$ radians. Green light ($\lambda = 532$ nm) is sent through slits that are d = 8500 nm apart. At what angle θ will the m = 1 points of constructive and destructive interference be found? You may assume the screen is far away.

 $E_2 = E_0 \cos(Kr_2 - \omega t), \text{ BECHOSE of phase shifter,}$ $E_1 = E_0 \cos(Kr_1 - \omega t + T/\omega). \text{ Ep} = E_1 + E_2$ Constructive Int. $\Rightarrow \cos(Kr_2 - \omega t) = \cos(Kr_1 - \omega t + T/\omega)$ $\Rightarrow Kr_2 - \omega t = Kr_1 - \omega t + T/\omega + 2\pi m \Rightarrow K(r_2 - r_1) = \frac{T}{6} + 2\pi m = 2\pi (\frac{t}{6} + m)$ $\Rightarrow [2 - r_1 = \lambda (\frac{1}{12} + m). \text{ Screen far away} \Rightarrow [2 - r_1 \approx d \sin \Theta]$ $\Rightarrow d \sin \Theta = \lambda (m + \frac{1}{12}) \in \text{ Constructive}$

Destructive: Cos (Krz-ut) = - Cos (Kr, -ut+70) => Krz-ut = Kr-ut+76+ = (rz-r) = = = = (m+1/2+1/2) = (dsn0= > (m+72) (= destructive

Constructive:
$$M=1 \Rightarrow dsin\theta = \lambda(\frac{13}{12})$$

 $\Rightarrow sin\theta = \frac{\lambda}{d}(\frac{13}{12}) = \frac{532}{8500}(\frac{13}{12}) = .0678$
 $\Rightarrow \theta = sin^{-1}(.0678) = 3.89^{\circ} \approx 4^{\circ}$

Destructive:
$$M=1 \Rightarrow dsin \theta = \lambda \left(\frac{19}{12}\right)$$

$$\Rightarrow$$
 Sin $\theta = \frac{532}{8500} \left(\frac{19}{12} \right) = ,099$

3. Telescopes and car headlights both use parabola shaped mirrors in their design. As shown below, parabolic and spherical mirrors share the behavior of focusing parallel rays through a single point.

To see what image a parabolic mirror creates, sketch the P-ray and F-ray for the top and midpoint of the image in the diagram below. Comment on your results. *Note:* To make the drawing easier, the mirror below has a much lower curvature than the one above and may appear spherical to you, but I promise, its equation is parabolic. $(x = -\frac{1}{8}y^2)$ to be exact.)

So FaraBolic

Mirror "skew"

their images.

If objects is small,

the skewing will be

Small & swill get

And image like that

Aspherical mirror

But it wan't obey the Mirror Equation.

4. Two sources of monochromatic, coherent light, S_1 and S_2 , are placed $10 \, nm$ apart as shown below. If destructive interference is occurring at the point labeled P, find a possible wavelength of the light emitted by the two sources.

Destructure INTF = 1-12= (m+1/2)

So Here are the possibilities:

5. Red laser light, wavelength 635 nm, is sent through a single slit of width a = 800 nm. If the screen is 50 cm away, what is the intensity (as a fraction of the maximum intensity I_0) at the point P which is 15 cm above the center line?

$$SR = SING = \frac{3}{109} \Rightarrow B = 2\pi (800 \text{ nm})(3/100) = 2.275 \text{ rad}$$

$$(635 \text{ nm})$$

= B/2=1.1373rad

$$\Rightarrow T = I_0 \left[\frac{\sin(1.1373 \text{ rad})}{1.1373} \right]^2 = I_0 \left[\frac{0.9075}{1.1373} \right]^2 = I_0 \left(\frac{0.6367}{1.1373} \right)$$