(1.) What is the magnitude and direction of the vector sum for the two force vectors shown.

(2.) A projectile is launched at 37° above the horizontal from the top of the cliff with a speed of 25 m/s. If its range is 40m, how high above the ground is the cliff?

- (b) 11.2 m
- (c) 15.9 m
- (d) 24.9 m
- (e) 31.5 m

Know: Xo=0, X=71.5h, Y=0 Vo,x=Vocosd=25mlsos37° Vo,y=Vosind=25mlssin37°

UNKNOWN: Yo=h=?, t, Vy

So Use X=Xo+Vo,xt to Finot then y=Yo+ Vo,yt-Egt2 to Finoh

X=X0+Vb,x+ => 71.5m = 25m/s cos 37°+ => + = 71.5m 3.5811s

 $y = y_0 + y_0, y_1 - z_0 + z_0^2 + y_0 +$

(3.) By pulling on the 25-kg crate as shown, the man is able to drag it horizontally across the floor. Which of the following is a true statement about the crate?

- (a) The normal force acting on the crate is equal to 245 N.
- (b) The normal force acting on the crate is smaller than 245 N.
- (c) The normal force acting on the crate is greater than $245\,N.$
- (d) There is not enough information to make a statement about the magnitude of the normal force as compared to 245 N.

Forces: Ryp, W Down, Pat 30° Maybe friction, Fix to left

No METIOD iny-DIRECTION =) ZIF, = 0 => Dy+Ty+vy+ffq=0

= n+Ts.n30°-W=0 + n= W-ET

W=25kg (9.8m/s³) = 245N = N=245N-17

So normal must be smaller than ayon (4.) A 65 kg man riding in an elevator has an apparent weight of 715 N, what is the elevator's acceleration?

- (a) $1.2 \, m/s^2$, upward
- (b) $1.2 \, m/s^2$, downward
- (c) $9.8 \, m/s^2$, downward
- (d) $11.0 \, m/s^2$, upward
- (e) $11.0 \, m/s^2$, downward

Forces or MAN: 7 Up M=715N

(370 DOWN, W= mg=(656)(9.8mb2)=637N

In IF= may = n-w=may

- 15 639N-637N=65% ay

7 78N = Cosksay

= Cey = 780 65% = +1.2 m/s2 = 1.2 m/s up

(5.) A boy rides a sled down an icy (and therefore frictionless) hill whose height above the ground is given by the equation $y = x^{3/4}$, where y is in meters when x is in meters. If he starts from rest at $x = 1.5 \, m$, how fast will he be going at the bottom?

(a)	5.15	m/s
` '		/

- (b) $5.42 \, m/s$
- (c) $6.00 \, m/s$
- (d) $7.35 \, m/s$

= /26.560m/c = 5.15m/s

(e) There is not enough information to determine.

(6.) A 12.5-kg mass is sliding across a frictionless floor until it stopped by a 1000 N/m spring (which is initially uncompressed). If the maximum compression of the spring is 0.15 m, how fast was the mass originally going?

3.46 (a) 1969 m/s
(b) 1.34 m/s
(c) 1.64 m/s
(d) 134/s
(e) 3.46 m/s

(7.) A 2000-kg tanker car going 5 m/s to the right has a completely inelastic collision with a 1500-kg boxcar going to the left. If the combination is going 1 m/s to the left after the collision, how fast was the boxcar going before?

(a) $4.33 \, m/s$

(b) $5.56 \, m/s$

Conservation of Momentum:

(c) $9.00 \, m/s$

MA VALX + MB DBLX = (MA+MB) 1/2, X

(d) $10.6 \, m/s$

(e) $13.0 \, m/s$

VAL, X-Souls, VBI, X=?, Vz, X=-longs

+ 2000/s (Smb) + 1500/g Va,x = (3500/s)(-1mb)

\$ 10000 kg. ~10 + 1500 kg barx = - 3500 kg. ~15

→ 1500% VBI,K = -350045.m/s -100004.m/s = -13500 Ks.m/s

2) VBI, X = -1350019.mg = -9mls = 9mls to left

- (8.) A point 0.75 m from the center of a spinning wheel has a linear speed of 1.5 m/s. What is the angular speed of the wheel in RPM?
 - (a) 0.209 RPM
 - (b) 0.5 RPM
 - (c) 2 RPM
 - (d) $4.77 \, RPM$

(e) $19.1 \, RPM$

(9.) A uniform bar is leaning at rest against a wall as shown. If the normal force acting on the bar at point A is 25 N, what is the weight of the bar? Assume there is no friction between the bar and the wall at point A.

Outloon Bar & win middle & 2m & from one Horizontally

No Potation + ZIT=0.

is tries to Robote clockwise while is conterclockwise in ITT = Tn - Tw = Tn

Wertical, is Horizontal & XW = Yn

\$\frac{1}{2} \left(\text{Zm} \cdot \c

(10.) A man, sitting on the office chair shown, has two large weights in his hands. The man is spinning at $3 \, rad/s$ with the weights held out to the sides. Which of the following is a possible angular speed for the man after he has pulled the weights closely to his chest?

(11.) A 3 kg mass is attached to a 250 N/m spring as shown below. At time t = 0, the mass is started from rest some distance from its equilibrium position. Where should the mass be started to give its motion a period of 1.3 s? Assume there is no friction between the mass and the floor.

- (a) $0.69 \, m$
- (b) $0.765 \, m$
- (c) $1.3 \, m$
- (d) Any distance will give a period of 1.3 s.
- There is no distance that will give a period of 1.3 s.

W=ZT) T=ZII = 2Trad 9.1287 mll = 0688s

So Periodis Fued at 0.688s AND No chole For

into Al position Can charge it.

(12.) A 2kg mass is attached to a 50 N/m spring as shown below. At time t=0, the mass

is started from its equilibrium position with a velocity of $4.6 \, m/s$ to the right. There is no friction between the mass and the floor. What is the phase angle, ϕ , in the equation

thisome!

X = Acos(w+++) + Xo = Acos + X0=0 -> Acosp=0 -> d= ±1/2

(c)
$$-\frac{2\pi}{5}$$
(d) $\frac{2\pi}{5}$

(e) 0

No=+ 4 longs => position so & must be - The such that

- (13.) On some alien planet, you find that a 0.34-m long simple pendulum has a period of 2.0 s, what is the acceleration due to gravity on that planet?
 - (a) $0.034 \, m/s^2$

(b) $1.36 \, m/s^2$

 $(c) 3.4 \, m/s^2$

(d) $6.8 \, m/s^2$

(e) $11 \, m/s^2$

Simple Pensalum: W= 19

十=器=241号

7 T2 4 T2 - 4 T2 - 4 T2

7 9 = 4 112 (034m) = 3.3557 m/sc (25)2 = 3.4 m/s(14.) Which pair of graphs shown below correspond to a sinusoidal wave with a speed of $v=0.8\,cm/s$?

Nothing!

- (a) Graphs #2 and #1.
- (b) Graphs #3 and #1.
- (c) Graphs #4 and #1.
- (d) Graphs #3 and #2.
- (e) Graphs #4 and #2.

(15.) Your starship, The Aimless Wanderer, is in circular orbit around a 4.0×10^5 -m radius, alien planet (which by law you have to call Mongo) with a period of 3.0 hours. If The Aimless Wanderer's distance from the center of Mongo is 1.5×10^6 m, what is the acceleration due to gravity on the surface of planet Mongo?