

(2.) A projectile is launched at 37° above the horizontal from the top of the cliff with a speed of m/s. If its range is m/s, how high above the ground is the cliff?

So use X=Xo+Voxt to findt then use y = yo + Vo, y t - = gt2 to find h 4=40+Vo,yt- = gt = 0=h+(asms)sin37 (3.686s) - = (9.8m/s)(3.686s)

$$\Rightarrow 0 = h + 32 + 8m - 66.57m \Rightarrow 0 = h - 11.1m$$

 $\Rightarrow h = 11.1m$

(3.) By pulling on the 25-kg crate as shown, the man is able to drag it horizontally across the floor. Which of the following is a true statement about the crate?

- (a) The normal force acting on the crate is equal to 245 N.
- (b) The normal force acting on the crate is smaller than 245 N.
- (c) The normal force acting on the crate is greater than $245\,N.$
- (d) There is not enough information to make a statement about the magnitude of the normal force as compared to 245 N.

Forces: Ryp, is Down, Fat 30° Maybe friction, Fix to left

No METIOD iny-DIRECTION = ZF = 0

= n+Tsingo-co=0 + n= w- ET

W=25kg (9.8m/s³) = 245N = N=245N-1

So normal must be smaller than 24th (4.) A 65 kg man riding in an elevator has an apparent weight of 559 N, what is the elevator's acceleration?

- (a) $1.2 \, m/s^2$, upward
- (b) $1.2 \, m/s^2$, downward
- (c) $8.6 \, m/s^2$, upward
- (d) $8.6 \, m/s^2$, downward
- (e) $9.8 \, m/s^2$, downward

Forces: nup, n=559N

BOWN, W=(65kg)(9.8~/5")=637N

1000

(5.) A boy rides a sled down an icy (and therefore frictionless) hill whose height above the ground is given by the equation $y = x^{5/2}$, where y is in meters when x is in meters. If he starts from rest at $x = 1.5 \, m$, how fast will he be going at the bottom?

- (a) $5.15 \, m/s$
- (b) $5.42 \, m/s$
- (c) $6.00 \, m/s$
- (d) 7.35 m/s
- (e) There is not enough information to determine.

Charty only force Doing Work
$$\Rightarrow$$
 $\frac{1}{2}mV_1^2 + mgy_1 = \frac{1}{2}mV_2^2 + mgy_2$
 $V_1 = 0, \ y_1 = (1.5)^{9/2} = 2.756m, \ V_2 = ?, \ y_2 = 0$
 $\frac{1}{2}V_2^2 = gy_1 \Rightarrow V_2 = \sqrt{2gy_1} = \sqrt{2(9.8m/s^2)(2.756m)}$
 $= \sqrt{54m/s^2} = 7.35m/s$

(6.) A 12.5-kg mass is sliding across a frictionless floor until it stopped by a 750 N/m spring (which is initially uncompressed). If the maximum compression of the spring is 0.15 m, how fast was the mass originally going?

(a) $1.16 m/s$
(b) 1.35 m/s
(c) 1.64 m/s
(d) 3.00 m/s
(e) $4.24 m/s$

Spring only force Doing Work
$$\Rightarrow \pm mV_i^2 + \pm kS_i^2 = \pm mV_2^2 + \pm kS_2^2$$

 $\pm V_1 = ?$, $S_1 = 0$, $V_2 = 0$, $S_2 = 0.15m$
 $\Rightarrow \pm (12.5 \text{ K})(V_1^2) = \pm (750 \text{ N/m})(0.15 \text{ m/s})$

(7.) A 2000-kg tanker car going $5.00 \, m/s$ to the right has a completely inelastic collision with a 1000-kg boxcar going to the left. If the combination is going $1.00 \, m/s$ to the left after the collision, how fast was the boxcar going before?

- (a) $6.86 \, m/s$
- (b) $7.00 \, m/s$

- Conservation of Morentum:
 - Ma Val, x + MB VBI, X = (MA+MB) VZ, X
- (c) $9.00 \, m/s$
- (d) $10.6 \, m/s$
- /(e) $13.0 \, m/s$
- VAI, X = 5 mls, VBI, X =?, Vz, X = -1 mls
- (2000k)(5mb) + (1000kg) VBI, X = (3000kg) (4mb)
 - = 10000 kg.mls + 1000kg VB1, X = -3000 kg.mls
 - = 1000 kg VB1, X= -3000 kg.mb-10000 kg.mb = -13000 kg.mb

- (8.) A point 0.65 m from the center of a spinning wheel has a linear speed of 1.3 m/s. What is the angular speed of the wheel in RPM?
 - (a) $0.209 \, RPM$
 - (b) 0.5 RPM
 - (c) 2 RPM
 - (d) 4.77 RPM
 - (e) 19.1 RPM

V=wr = W=V=1.3mls 0.65m = 2/5

= W= Zrad Tev XGOS = 19.1RAM

(9.) A uniform bar is leaning at rest against a wall as shown. If the normal force acting on the bar at point A is 75 N, what is the weight of the bar? Assume there is no friction between the bar and the wall at point A.

(Noticen Ber =
$$\vec{\omega}$$
 at Center = $2n$ for $3n$)

No Rotation = $2T = 0$
 $\vec{\omega}$ tries to Rotate Clockwise while \vec{n} Constant Clockwise

 $\vec{\omega}$ $\vec{\omega}$

(10.) A man, sitting on the office chair shown, has two large weights in his hands. The man is spinning at $3 \, rad/s$ with the weights held out to the sides. Which of the following is a possible angular speed for the man after he has pulled the weights closely to his chest?

(11.) A 3 kg mass is attached to a 250 N/m spring as shown below. At time t=0, the mass is started from rest some distance from its equilibrium position. Where should the mass be started to give its motion a period of 1.5 s? Assume there is no friction between the mass and the floor.

- (a) 0.43 m
- (b) 0.69 m
- (c) $2.3 \, m$
- W= 1/= 1 2501/m = 9.1287 rads
- (d) Any distance will give a period of 1.5 s.
- There is no distance that will give a period of 1.5 s.

PERNOD ALREADY DETERMINED AND NO Choice of MOTION ROLLION CHANGE IT.

(12.) A 2kg mass is attached to a 50 N/m spring as shown below. At time t=0, the mass is started from its equilibrium position with a velocity of 5.6 m/s to the right. There is no friction between the mass and the floor. What is the phase angle, ϕ , in the equation $x = A\cos(\omega t + \phi)$ for this motion?

	1
π	
$(a) -\frac{1}{2}$	
Management of the control of the con	

(b) $\frac{\pi}{2}$

(c) $-\frac{2\pi}{5}$

(d) $\frac{2\pi}{5}$

(e) 0

X=0 = 0= Acosp = = = = = = = =

Vo positive of A most be -TTZ such that

Vo= -WA Sin(-17/2)= -WA (-1)= +WA

- (13.) On some alien planet, you find that a 0.34-m long simple pendulum has a period of 1.1 s, what is the acceleration due to gravity on that planet?
 - (a) $0.010 \, m/s^2$

- (b) $0.41 \, m/s^2$
- 一部之下=200点
- (c) $3.4 \, m/s^2$
- (d) $6.8 \, m/s^2$
- (e) $11 \, m/s^2$

-. 9 = 4TT (0-34m) = 11.02 m/s² = 11.02 m/s²

(14.) Which pair of graphs shown below correspond to a sinusoidal wave with a speed of $v=1.6\,\mathrm{cm/s?}$

Nothing

- (a) Graphs #2 and #1.
- (b) Graphs #3 and #1.
- (c) Graphs #4 and #1.
- (d) Graphs #3 and #2.
- (e) Graphs #4 and #2.

(15.) Your starship, The Aimless Wanderer, is in circular orbit around a 5.0×10^6 -m-radius, alien planet (which by law you have to call Mongo) with a period of 5.00 hours. If The Aimless Wanderer's distance from the center of Mongo is $1.1 \times 10^7 \,\mathrm{m}$, what is the acceleration due to gravity on the surface of planet Mongo?

9=GMP Rp=5x10°m but world Mp

T= ZTITE will provide Mp. r=1.1x10m
T=5hx3600s = 18000s

T= 417/3 = 417/3 = 4172 (1.1x10m)3 (6.67x10)3 (6.67x10)3 (6.67x10)3 (8000) = 2.43x10 / 18000)

9=GMP=(6.67x10"N.m/g=)(2-2+3x10"/s) Rp2 (5x109m/2 = 6.487m6" - (0.5m/c=