1. A uniform $6.3 \mathrm{~kg}, 1 \mathrm{~m}$ long slender rod is attached to a vertical wall and can pivot about the point $O$ shown below. The rod is being held horizontal by an applied force $\overrightarrow{\mathbf{F}}$. What is the magnitude of the force $\overrightarrow{\mathbf{F}}$ shown above if the rod does not rotate? What are the directions of the torque exerted by $\overrightarrow{\mathbf{F}}$ and the torque exerted by gravity?

2. The reverse gear of a car is made possible through a clever arrangement of gears and axles as schematically shown below. If the radius of each gear is as given in the figure and the car's engine rotates gear $A$ with $\omega_{A}=40 \mathrm{rad} / \mathrm{s}$, what is the angular velocity of the the "drive shaft", $B$ ?

3. An amusement park ride has a car, initial speed $6 \mathrm{~m} / \mathrm{s}$ and distance $r=4 m$, traveling in a horizontal circular path. If the distance $r$ is slowly decreased (so the car always goes around in a circle) to 1.5 m , how fast will the car be going? Ignore friction.

4. The $9-k g$ wheel shown below, when its center is given an initial speed of $4.3 \mathrm{~m} / \mathrm{s}$, rolls without slipping up a hill to a height of 6 m . What is the wheel's moment of inertia?

5. The $l=2.5-m$ long stick has, at the instant shown, angular speed $\omega=3 \mathrm{rad} / \mathrm{s}$ and angular velocity $\alpha=5 \mathrm{rad} / \mathrm{s}^{2}$ both in the clockwise sense. What is the magnitude and direction of the angular velocity, the angular acceleration, the linear velocity, and the linear acceleration of the point at a distance 2 m from $O$ ?

6. The $12-\mathrm{kg}$ "physical-pendulum" with moment of inertia $5.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and center of mass at $G$ is released from rest at $\theta=65^{\circ}$. How fast will it be going when it swings through the vertical $\left(\theta=90^{\circ}\right)$ ?

7. What is the angular acceleration of the physical pendulum the instant it is released from rest at $\theta=65^{\circ}$ ?
8. If the roll of paper towels shown below has mass 25 kg and the coefficient of kinetic friction between the wall and paper towels is $\mu_{k}=0.3$, what is the force exerted by the support rod and the angular acceleration of the roll. Treat the roll as a solid cylinder, and therefore has moment of inertia, $I=\frac{1}{2} M R^{2}$.

9. Find the torque exerted by the $25 N$ and $20 N$ forces shown. If the torques remain constant and the $3-\mathrm{kg}$ mass has an initial speed of $3.4 \mathrm{~m} / \mathrm{s}$, how fast will it be going after 0.25 s ? Assume the mass continues on its $2-m$ circle.

