April 25, Week 14

Today: Chapter 13, Newton's Law of Gravity

Exam \#5, Friday, April 27
On Chapters 9 and 10
Review Session: Thursday, April 26, 7:30PM, Room 114 of Regener Hall.

Practice Exam on Website.
Practice Problems on Mastering.

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to 5 m (horizontal to vertical).

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to 5 m (horizontal to vertical).

Example: A projectile is fired, 1 m above the ground, horizontally with a speed of $8000 \mathrm{~m} / \mathrm{s}$. How far above the ground is it after $1 s$?

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to $5 m$ (horizontal to vertical).

Example: A projectile is fired, 1 m above the ground, horizontally with a speed of $8000 \mathrm{~m} / \mathrm{s}$. How far above the ground is it after $1 s$?

Satellite - Any projectile with sufficient horizontal velocity to "miss" the ground.

Orbits

Orbits come in two types:

Orbits

Orbits come in two types:
(1) Closed Orbits - Satellite returns to its starting point.

Orbits

Orbits come in two types:
(1) Closed Orbits - Satellite returns to its starting point.
(2) Open Orbits - Satellite escapes to infinity.

Orbits

Orbits come in two types:
(1) Closed Orbits - Satellite returns to its starting point.
(2) Open Orbits - Satellite escapes to infinity.

Newton showed that when gravity is the only force doing work, the only allowed closed orbits are circular or elliptical in shape. While the only open orbits are parabolic or hyperbolic.

Orbits II

The initial velocity of the satellite determines whether the orbit is open or closed.

A projectile is launched
from A toward B.
Trajectories (1) through
7) show the effect of
increasing initial speed.

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

$$
\sum \overrightarrow{\mathbf{F}}_{2}=M_{2} \overrightarrow{\mathbf{a}}
$$

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

$$
\sum \overrightarrow{\mathbf{F}}_{2}=M_{2} \overrightarrow{\mathbf{a}}
$$

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

$$
\sum \overrightarrow{\mathbf{F}}_{2}=M_{2} \overrightarrow{\mathbf{a}} \Rightarrow F_{g}=M_{2} a_{r a d}
$$

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

$$
\begin{aligned}
& \sum \overrightarrow{\mathbf{F}}_{2}=M_{2} \overrightarrow{\mathbf{a}} \Rightarrow F_{g}=M_{2} a_{r a d} \\
& \Rightarrow F_{g}=M_{2} \frac{v^{2}}{r}
\end{aligned}
$$

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

Circular Orbits

In circular orbit, gravity creates the centripetal acceleration.

Circular Orbits II

In circular orbit, gravity creates the centripetal acceleration.

Circular Orbits II

In circular orbit, gravity creates the centripetal acceleration.

Speed: $v=\sqrt{\frac{G M_{1}}{r}}$
Constant Speed $\Rightarrow v=\frac{2 \pi r}{T}$

Circular Orbits II

In circular orbit, gravity creates the centripetal acceleration.

Speed: $v=\sqrt{\frac{G M_{1}}{r}}$
Constant Speed $\Rightarrow v=\frac{2 \pi r}{T}$
Period: $T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{1}}}$

Circular Orbits II

In circular orbit, gravity creates the centripetal acceleration.

Kepler's Laws

Before Newton, all astronomical work had been observational. Using the data of Danish astronomer Tycho Brahe (1546-1601), the German mathematician Johannes Kepler (1571-1630) was able to deduce (but not explain), three statements about planetary motion.

Kepler's Laws

Before Newton, all astronomical work had been observational. Using the data of Danish astronomer Tycho Brahe (1546-1601), the German mathematician Johannes Kepler (1571-1630) was able to deduce (but not explain), three statements about planetary motion.

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

2: The imaginary line from the sun to a planet sweeps out equal areas in equal times.
3: The period of the planet's motion is proportional to the orbit's semi-major axis to the $\frac{3}{2}$ power.

Ellipses - The Geometric Approach

Ellipse - ovals.

Ellipses - The Geometric Approach

Ellipse - ovals.

Ellipses - The Geometric Approach

Ellipse - ovals.

Ellipses - The Geometric Approach

Ellipse - ovals.

Ellipses - The Geometric Approach

Ellipse - ovals.

Ellipses - The Geometric Approach

Ellipse - ovals.

S, S^{\prime} - foci

Ellipses - The Geometric Approach

Ellipse - ovals.

S, S^{\prime} - foci

Ellipses - The Geometric Approach

Ellipse - ovals.

S, S^{\prime} - foci

Ellipses - The Geometric Approach

Ellipse - ovals.

S, S^{\prime} - foci

Ellipses - The Geometric Approach

Ellipse - ovals.

$$
S, S^{\prime} \text { - foci }
$$

ellipse = all points P such that
$S P+S^{\prime} P=$ constant

Ellipses - The Algebraic Approach

Ellipse - ovals.

Ellipses - The Algebraic Approach

Ellipse - ovals.

Ellipses - The Algebraic Approach

Ellipse - ovals.

a : semi-major axis

Ellipses - The Algebraic Approach

Ellipse - ovals.

a : semi-major axis

Ellipses - The Algebraic Approach

Ellipse - ovals.

a : semi-major axis
b : semi-minor axis

Ellipses - The Algebraic Approach

Ellipse - ovals.

Ellipses - The Algebraic Approach

Ellipse - ovals.

Ellipses - The Algebraic Approach

Ellipse - ovals.

a : semi-major axis
b : semi-minor axis
$\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
e : eccentricity

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

$$
\begin{aligned}
& a=3 \\
& b=2 \\
& e=\sqrt{1-\left(\frac{b}{a}\right)^{2}} \\
& e=0.745
\end{aligned}
$$

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Eccentricity

The eccentricity gives the amount of "oval-ness" of the ellipse.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Kepler's First Law

Kepler's Laws:
1: Each planet's orbit traces out the shape of an ellipse with the sun located at one focus.

Summer in Northern Hemisphere Aphelion

Winter in
Northern
Hemisphere
\downarrow
Perihelion

Kepler's First Law II

Kepler's First Law II

Planet	e

Kepler's First Law II

Planet	e
Mercury	0.206
Venus	0.007
Earth	0.017
Mars	0.093

Kepler's First Law II

Planet	e
Mercury	0.206
Venus	0.007
Earth	0.017
Mars	0.093
Jupiter	0.048
Saturn	0.054
Uranus	0.047
Neptune	0.009
Pluto	0.249

Kepler's First Law III

Pluto

Neptune

