April 23, Week 14

Today: Chapter 13, Newton's Law of Gravity
Homework \#10-Due Today at 11:59pm Mastering Physics: 7 questions from chapter 10. Written Question: 10.86

Exam \#5, Friday, April 27
On Chapters 9 and 10
Review Session: Thursday, April 26, 7:30PM, Room 114 of Regener Hall.

Practice Exam on Website.

Review

M_{1} - Mass of first object

M_{2} - Mass of second object
r - separation distance, center-to-center for spherical objects

Universal Gravitational Constant:
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$$
\overrightarrow{\mathrm{F}}_{1} \text { - Force on } 1 \text { due to } 2
$$

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$\overrightarrow{\mathrm{F}}_{1}$ - Force on 1 due to 2
$\overrightarrow{\mathrm{~F}}_{2}$ - Force on 2 due to 1

Geometry determines direction

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$\overrightarrow{\mathbf{F}}_{1}$ - Force on 1 due to 2
$\overrightarrow{\mathbf{F}}_{2}$ - Force on 2 due to 1
Geometry determines direction

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$\overrightarrow{\mathbf{F}}_{1}$ - Force on 1 due to 2
$\overrightarrow{\mathbf{F}}_{2}$ - Force on 2 due to 1
Geometry determines direction
f. b. d. for M_{1}

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$\overrightarrow{\mathrm{F}}_{1}$ - Force on 1 due to 2
$\overrightarrow{\mathbf{F}}_{2}$ - Force on 2 due to 1
Geometry determines direction
f. b. d. for M_{1}

Direction

The gravitational force is an "attractive" force \Rightarrow each object feels a force towards the other.

$\overrightarrow{\mathrm{F}}_{1}$ - Force on 1 due to 2
$\overrightarrow{\mathbf{F}}_{2}$ - Force on 2 due to 1
Geometry determines direction
f. b. d. for M_{1}

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

(a) Left

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

(a) Left
(b) Right

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

(a) Left
(b) Right
(c) Up

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

(a) Left
(b) Right
(c) Up
(d) The net force is zero

Clicker Quiz

Three masses are arranged in a line with the distance between the second and third double that of the distance between the first and second. If the third mass is twice as large as the other two, what direction is the net gravitational force acting on the middle mass?

(a) Left

(c) Up
(b) Right
(d) The net force is zero

Weight

Weight - Force due to gravity.

Weight

Weight - Force due to gravity.
To relate what we used before ($M g$) to Newton's law of gravity:

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:
$F_{g}=\frac{G M_{E} M}{r^{2}}$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before $(M g)$ to Newton's law of gravity:

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before ($M g$) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

R_{E} - Earth's radius

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
F_{g}=\frac{G M_{E} M}{r^{2}}
$$

R_{E} - Earth's radius

$$
r=R_{E}+h
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$F_{g}=\frac{G M_{E} M}{r^{2}}$
R_{E} - Earth's radius
$r=R_{E}+h$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

$$
\begin{aligned}
& F_{g}=\frac{G M_{E} M}{r^{2}} \\
& R_{E} \text { - Earth's radius } \\
& r=R_{E}+h \approx R_{E}
\end{aligned}
$$

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Weight

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Acceleration due to gravity

Weight - Force due to gravity.
To relate what we used before ($M g$) to Newton's law of gravity:
Much less
than R_{E}

Acceleration due to gravity

Weight - Force due to gravity.
To relate what we used before ($M g$) to Newton's law of gravity:

Acceleration due to gravity

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Acceleration due to gravity

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Acceleration due to gravity

Weight - Force due to gravity.
To relate what we used before (Mg) to Newton's law of gravity:

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
W_{g}=-\Delta U_{g}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
W_{g}=-\Delta U_{g}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
\begin{array}{r}
W_{g}=-\Delta U_{g} \\
W_{g}=\int_{r_{1}}^{r_{2}} \overrightarrow{\mathbf{F}}_{g} \cdot \overrightarrow{d \mathbf{r}}
\end{array}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
\begin{gathered}
W_{g}=-\Delta U_{g} \\
W_{g}=\int_{r_{1}}^{r_{2}} \overrightarrow{\mathbf{F}}_{g} \cdot \overrightarrow{d \mathbf{r}}=\int_{r_{1}}^{r_{2}} F_{g} d r \cos 180^{\circ}
\end{gathered}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
\begin{gathered}
W_{g}=-\Delta U_{g} \\
W_{g}=\int_{r_{1}}^{r_{2}} \overrightarrow{\mathbf{F}}_{g} \cdot \overrightarrow{d \mathbf{r}}=\int_{r_{1}}^{r_{2}} F_{g} d r \cos 180^{\circ} \\
W_{g}=-\int_{r_{1}}^{r_{2}} \frac{G M_{1} M_{2}}{r^{2}} d r
\end{gathered}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

$$
W_{g}=\int_{r_{1}}^{r_{2}} \overrightarrow{\mathbf{F}}_{g} \cdot \overrightarrow{d \mathbf{r}}=\int_{r_{1}}^{r_{2}} F_{g} d r \cos 180^{\circ}
$$

Gravitational Potential Energy

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy II

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy II

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy II

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Gravitational Potential Energy II

Our previous equation, $U_{g}=M g y$, is valid for distance $y \ll R_{P}$ (much less than a planet's radius). For distances large compared to the radius, we have to start over.

Escape Speed

$$
U_{g}=-\frac{G M_{1} M_{2}}{r}
$$

This equation is always negative because it sets $U_{g}=0$ at $r \rightarrow \infty$.

Escape Speed

$$
U_{g}=-\frac{G M_{1} M_{2}}{r}
$$

This equation is always negative because it sets $U_{g}=0$ at $r \rightarrow \infty$.

When gravity is the only force doing work:

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

Escape Speed

$$
U_{g}=-\frac{G M_{1} M_{2}}{r}
$$

This equation is always negative because it sets $U_{g}=0$ at $r \rightarrow \infty$.

When gravity is the only force doing work:

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

Escape speed - The initial speed needed by a rocket in order to barely escape from a planet's gravity.

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0$

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	r_{1}
$v_{2}=$	r_{2}

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	$r_{1}=R$ (planet's radius)
$v_{2}=$	r_{2}

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	$r_{1}=R$ (planet's radius)
$v_{2}=0$ (barely makes it)	r_{2}

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	$r_{1}=R$ (planet's radius)
$v_{2}=0$ (barely makes it)	$r_{2} \rightarrow \infty$

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	$r_{1}=R$ (planet's radius)
$v_{2}=0$ (barely makes it)	$r_{2} \rightarrow \infty$

$$
v_{e s}=\sqrt{\frac{2 G M_{1}}{R}}
$$

Escape Speed II

$$
\frac{1}{2} M_{2} v_{1}^{2}-\frac{G M_{1} M_{2}}{r_{1}}=\frac{1}{2} M_{2} v_{2}^{2}-\frac{G M_{1} M_{2}}{r_{2}}
$$

To escape a planet's gravity $\Rightarrow U_{g}=0 \Rightarrow r_{2} \rightarrow \infty$

$v_{1}=v_{e s}=?$	$r_{1}=R$ (planet's radius)
$v_{2}=0$ (barely makes it)	$r_{2} \rightarrow \infty$

$$
v_{e s}=\sqrt{\frac{2 G M_{1}}{R}}
$$

Example: Find the escape speed from the earth.

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to 5 m (horizontal to vertical).

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to 5 m (horizontal to vertical).

Example: A projectile is fired, 1 m above the ground, horizontally with a speed of $8000 \mathrm{~m} / \mathrm{s}$. How far above the ground is it after $1 s$?

Satellites

The earth is not flat! It has a curvature of roughly 8000 m to $5 m$ (horizontal to vertical).

Example: A projectile is fired, 1 m above the ground, horizontally with a speed of $8000 \mathrm{~m} / \mathrm{s}$. How far above the ground is it after $1 s$?

Satellite - Any projectile with sufficient horizontal velocity to "miss" the ground.

