April 18, Week 13

Today: Chapter 10, Angular Momentum
Homework \#10-Due April 26 at 11:59pm Mastering Physics: 7 questions from chapter 10. Written Question: 10.86

Exam \#5, Friday, April 27
On Chapters 9 and 10

Angular Momentum

Angular Momentum, $\overrightarrow{\mathrm{L}}$ - the rotational counterpart to linear momentum, $\overrightarrow{\mathrm{p}}$.

Angular Momentum

Angular Momentum, $\overrightarrow{\mathbf{L}}$ - the rotational counterpart to linear momentum, $\overrightarrow{\mathrm{p}}$.

$$
\sum \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t}
$$

Angular Momentum

Angular Momentum, $\overrightarrow{\mathbf{L}}$ - the rotational counterpart to linear momentum, $\overrightarrow{\mathrm{p}}$.

$$
\sum \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t}
$$

Angular Momentum

Angular Momentum, $\overrightarrow{\mathbf{L}}$ - the rotational counterpart to linear momentum, $\overrightarrow{\mathrm{p}}$.

$$
\sum \overrightarrow{\mathbf{F}}=\frac{\vec{d} \mathbf{p}}{d t} \quad \longrightarrow \quad \sum \vec{\tau}=\frac{\overrightarrow{\mathrm{L}}}{d t}
$$

How much torque must be applied to cause a change in rotation.

Angular Momentum

Angular Momentum, $\overrightarrow{\mathbf{L}}$ - the rotational counterpart to linear momentum, $\overrightarrow{\mathrm{p}}$.

$$
\sum \overrightarrow{\mathbf{F}}=\frac{\vec{d} \mathbf{p}}{d t} \quad \longrightarrow \quad \sum \vec{\tau}=\frac{\vec{d} \mathbf{d}}{d t}
$$

How much torque must be applied to cause a change in rotation.

For a point particle (an object with a single value of $\overrightarrow{\mathrm{v}}$), the angular momentum is:

$$
\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\vec{\tau}=\frac{\vec{d} \mathbf{L}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\vec{\tau}=\frac{\overrightarrow{\mathrm{L}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\vec{d} \mathbf{p}}{d t}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{aligned}
\vec{\tau} & =\frac{\vec{d} \mathbf{L}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
\vec{\tau} & =\frac{\overrightarrow{d \mathbf{L}}}{d t}
\end{aligned}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\tau}}=\frac{\overrightarrow{d \overrightarrow{\mathbf{L}}}}{d t} \quad \overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
& \overrightarrow{\boldsymbol{\tau}}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})
\end{aligned}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\tau}}=\frac{\overrightarrow{\mathrm{d}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})=\left(\frac{\overrightarrow{d \mathbf{r}}}{d t} \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}} \times \frac{\overrightarrow{d \mathbf{p}}}{d t}\right)
\end{gathered}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{gathered}
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})=\left(\frac{\overrightarrow{d \mathbf{r}}}{d t} \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}} \times \frac{\overrightarrow{d \mathbf{p}}}{d t}\right) \\
=(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{p}})+(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}})
\end{gathered}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{gathered}
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})=\left(\frac{\overrightarrow{d \mathbf{r}}}{d t} \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}} \times \frac{\overrightarrow{d \mathbf{p}}}{d t}\right) \\
=(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{p}})+(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}})=(\overrightarrow{\mathbf{v}} \times M \overrightarrow{\mathbf{v}})+\vec{\tau}
\end{gathered}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{gathered}
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\vec{d} \mathbf{p}}{d t} \\
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})=\left(\frac{\overrightarrow{d \mathbf{r}}}{d t} \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}} \times \frac{\overrightarrow{d \mathbf{p}}}{d t}\right) \\
=(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{p}})+(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}})=(\overrightarrow{\mathbf{v}} \times M \overrightarrow{\mathbf{v}})+\overrightarrow{\boldsymbol{\tau}}=0+\overrightarrow{\boldsymbol{\tau}} \\
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{v}}=0 \text { since } \phi=0^{\circ}
\end{gathered}
$$

Angular Momentum II

$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$ can be shown by taking a derivative.

$$
\begin{gathered}
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t} \quad \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \quad \overrightarrow{\mathbf{F}}=\frac{\overrightarrow{d \mathbf{p}}}{d t} \\
\vec{\tau}=\frac{\overrightarrow{d \mathbf{L}}}{d t}=\frac{d}{d t}(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}})=\left(\frac{\overrightarrow{d \mathbf{r}}}{d t} \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}} \times \frac{\overrightarrow{d \mathbf{p}}}{d t}\right) \\
=(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{p}})+(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}})=(\overrightarrow{\mathbf{v}} \times M \overrightarrow{\mathbf{v}})+\overrightarrow{\boldsymbol{\tau}}=0+\vec{\tau}=\overrightarrow{\boldsymbol{\tau}} \\
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{v}}=0 \text { since } \phi=0^{\circ}
\end{gathered}
$$

Angular Momentum III

Units: $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

$$
\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times \overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times M_{i} \overrightarrow{\mathbf{v}}_{i}
$$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Each piece going on circle $\Rightarrow \overrightarrow{\mathbf{r}}_{i}$ is 90° to $\overrightarrow{\mathrm{v}}_{i}$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

$$
\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times \overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times M_{i} \overrightarrow{\mathbf{v}}_{i}
$$

Each piece going on circle $\Rightarrow \overrightarrow{\mathbf{r}}_{i}$ is 90° to $\overrightarrow{\mathrm{v}}_{i}$

$$
L_{i}=r_{i} M_{i} v_{i}
$$

Angular Momentum III

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

$$
\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times \overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times M_{i} \overrightarrow{\mathbf{v}}_{i}
$$

Each piece going on circle $\Rightarrow \overrightarrow{\mathbf{r}}_{i}$ is 90° to $\overrightarrow{\mathrm{v}}_{i}$

$$
L_{i}=r_{i} M_{i} v_{i}
$$

$$
v_{i}=r_{i} \omega
$$

Angular Momentum IV

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum IV

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum IV

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Angular Momentum IV

Units: $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \Rightarrow \mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

For rigid bodies (objects with infinitely many values of \vec{v}), we have to imagine splitting the object into many small pieces.

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?
(a) $2 N \cdot m$

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?
(a) $2 N \cdot m$
(b) $4 N \cdot m$

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?
(a) $2 N \cdot m$
(b) $4 N \cdot m$
(c) $5 N \cdot m$

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?
(a) $2 N \cdot m$
(b) $4 N \cdot m$
(c) $5 N \cdot m$
(d) $8 N \cdot m$

Clicker Quiz

A solid disk with moment of Inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating clockwise with angular speed $3 \mathrm{rad} / \mathrm{s}$. What average torque must be exerted over $2 s$ in order to make the disk spin counter-clockwise with angular speed $5 \mathrm{rad} / \mathrm{s}$?
(a) $2 N \cdot m$
(b) $4 N \cdot m$
(c) $5 N \cdot m$
(d) $8 N \cdot m$

Example

Point Particle: $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$

Rigid Body: $\overrightarrow{\mathrm{L}}=I \vec{\omega}$

Example

Point Particle: $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathrm{p}}$
Rigid Body: $\overrightarrow{\mathbf{L}}=I \vec{\omega}$

Example: Find the angular momentum of the earth for its orbital motion around the sun. Assume the $5.97 \times 10^{24}-\mathrm{kg}$ earth is following a circular orbit of radius $1.5 \times 10^{11} \mathrm{~m}$.

Example

Point Particle: $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathrm{p}}$
Rigid Body: $\overrightarrow{\mathrm{L}}=I \vec{\omega}$

Example: Find the angular momentum of the earth for its orbital motion around the sun. Assume the $5.97 \times 10^{24}-\mathrm{kg}$ earth is following a circular orbit of radius $1.5 \times 10^{11} \mathrm{~m}$.

Example: Find the angular momentum of the earth for its 24 -hour daily motion. Treat the earth as a solid sphere of radius of $6.38 \times 10^{6} \mathrm{~m}$.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

$\vec{\tau}_{B}=$ Torque on B due to A
$\vec{\tau}_{A}=$ Torque on A due to B
3rd Law for rotation: $\vec{\tau}_{A}=-\vec{\tau}_{B}$

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

$\vec{\tau}_{B}=$ Torque on B due to A
$\vec{\tau}_{A}=$ Torque on A due to B
3rd Law for rotation: $\vec{\tau}_{A}=-\vec{\tau}_{B}$

$$
\vec{\tau}_{A}+\vec{\tau}_{B}=0
$$

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

$$
\begin{aligned}
& \vec{\tau}_{B}=\text { Torque on } B \text { due to } A \\
& \vec{\tau}_{A}=\text { Torque on } A \text { due to } B \\
& \text { 3rd Law for rotation: } \vec{\tau}_{A}=-\vec{\tau}_{B} \\
& \quad \vec{\tau}_{A}+\vec{\tau}_{B}=0
\end{aligned}
$$

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.

Conservation of Angular Momentum

In the absence of external torques, the total angular momentum of a system cannot change.
$\overrightarrow{\vec{\tau}_{B}} \quad \vec{\tau}_{B}=\frac{\overrightarrow{d \mathbf{L}_{B}}}{d t}$

$$
\vec{\tau}_{A}=\frac{\vec{d}_{A}}{d t} \vec{\tau}_{A}=\begin{aligned}
& \vec{\tau}_{B}=\text { Torque on } B \text { due to } A \\
& \vec{\tau}_{A}=\text { Torque on } A \text { due to } B \\
& \text { 3rd Law for rotation: } \vec{\tau}_{A}=-\vec{\tau}_{B} \\
& \vec{\tau}_{A}+\overrightarrow{\mathbf{I}}_{B}=0 \\
& \frac{d \mathbf{L}_{A}}{d t}+\frac{\overrightarrow{\mathbf{L}_{A}}}{d t}=0
\end{aligned}
$$

