April 16, Week 13

Today: Chapter 10, Torque
Homework \#9 - Due Today at 11:59pm
Mastering Physics: 7 questions from chapter 9.
Written Question: 10.80
On problem 81 part (d) is wrong! Enter 0.816

Homework \#10-Due April 26 at 11:59pm Mastering Physics: 7 questions from chapter 10. Written Question: 10.86

Review

Torque, $\vec{\tau}$ - Measures the effectiveness of a force at causing rotation.

Review

Torque, $\vec{\tau}$ - Measures the effectiveness of a force at causing rotation.
counter-clockwise rotation

$$
\tau=r F \sin \phi
$$

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

For vertical forces:

$$
\tau=x F
$$

First Law for Rotation

Newton's First for Rotation - An object at rest, stays at rest. An object in uniform rotation stays in uniform rotation if the net torque acting on it is zero.

Uniform rotation \Rightarrow zero angular acceleration.

Second Law for Rotation

Newton's Second Law for Rotation -

Second Law for Rotation

Newton's Second Law for Rotation -

$$
\sum \vec{\tau}=I \vec{\alpha}
$$

Second Law for Rotation

Newton's Second Law for Rotation -

$$
\sum \vec{\tau}=I \vec{\alpha}
$$

Only true for spinning motion when you set the origin of your coordinates at the axis of rotation.

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?
(a) $\sum \tau=60 N \cdot m$

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?
(a) $\sum \tau=60 N \cdot m$
(b) $\sum \tau>60 N \cdot m$

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?
(a) $\sum \tau=60 N \cdot m$
(b) $\sum \tau>60 N \cdot m$
(c) $\sum \tau<60 N \cdot m$

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?
(a) $\sum \tau=60 N \cdot m$
(b) $\sum \tau>60 N \cdot m$
(c) $\sum \tau<60 N \cdot m$
(d) $\sum \tau=0 N \cdot m$

Clicker Quiz

What net torque in Newton-meters is required to make a lemon-shaped object with moment of inertia $I=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotate with angular acceleration $30 \mathrm{rev} / \mathrm{s}^{2}$?
(a) $\sum \tau=60 N \cdot m$
(b) $\sum \tau>60 N \cdot m \quad \sum \tau=120 \pi N \cdot m$
(c) $\sum \tau<60 N \cdot m$
(d) $\sum \tau=0 N \cdot m$

Second Law for Rotation

Newton's Second Law for Rotation -

$$
\sum \vec{\tau}=I \vec{\alpha}
$$

Only true for spinning motion when you set the origin of your coordinates at the axis of rotation.

Second Law for Rotation

Newton's Second Law for Rotation -

$$
\sum \vec{\tau}=I \overrightarrow{\boldsymbol{\alpha}}
$$

Only true for spinning motion when you set the origin of your coordinates at the axis of rotation.

Example: A 5 - kg mass is placed on a 36.9° incline and connected, by a massless rope, to a $25-\mathrm{kg}$ flywheel whose radius is 0.2 m and moment of inertia (for rotation about its center) is $0.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. If the coefficient of kinetic friction between the $5-\mathrm{kg}$ mass and the incline is 0.25 , what is the tension in the rope and the acceleration of the mass?

