April 13, Week 12

Today: Chapter 10, Torque
Homework \#9 - Due April 16 at 11:59pm
Mastering Physics: 7 questions from chapter 9.
Written Question: 10.80
On problem 81 part (d) is wrong! Enter 0.816
Test Scores:

C	Clicker Score	Since last Friday with 5 lowest scores dropped.
HW	Homework Average	Mastering Physics and written problems.
CA	Current Average	Out of 80 points!

Review

The kinetic energy of a spinning object is given by:

$$
K=\frac{1}{2} I \omega^{2}
$$

Review

The kinetic energy of a spinning object is given by:

$$
K=\frac{1}{2} I \omega^{2}
$$

The kinetic energy of a rolling without slipping object is given by:

$$
K=\frac{1}{2} M v_{c m}^{2}\left(1+\frac{I}{M R^{2}}\right)
$$

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.
O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.
O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which
the axis of rotation passes
r - distance to the force
a.k.a the lever arm

When $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ are perpendicular:
$\tau=r F$

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which
the axis of rotation passes
r - distance to the force
a.k.a the lever arm

When $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ are perpendicular:
$\tau=r F \quad$ Unit: $N \cdot m$

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$$
\begin{aligned}
& F_{\text {rad }} \text { - component parallel } \\
& \text { to } \overrightarrow{\mathrm{r}} \text { - causes no torque }
\end{aligned}
$$

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$$
\begin{aligned}
& F_{\text {rad }}-\text { component parallel } \\
& \text { to } \overrightarrow{\mathrm{r}} \text { - causes no torque }
\end{aligned}
$$

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\text {rad }}$ - component parallel to \vec{r} - causes no torque
$F_{\text {tan }}$ - component perpendicular to \vec{r}

- causes torque

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\text {rad }}$ - component parallel
to \vec{r} - causes no torque
$F_{\text {tan }}$ - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{t a n}
$$

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\text {rad }}$ - component parallel
to \vec{r} - causes no torque
$F_{\text {tan }}$ - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{t a n}
$$

Torque II

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\text {rad }}$ - component parallel to \vec{r} - causes no torque
$F_{\text {tan }}$ - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{t a n}=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product.

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product.

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product.

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product.

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product. counter-clockwise rotation

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product. counter-clockwise

$$
\tau=r F \sin \phi
$$

Torque III

The direction of the torque is given by a cross product. counter-clockwise

$$
\tau=r F \sin \phi
$$

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?
(a)

(b)

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?
(a)

(b)

(c)

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?
(a)

(b)

(c)

(d)

Clicker Quiz

Which of the following forces would cause a torque that is into the page (\otimes) about an axis passing through O ?

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some case by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by gravity (and any other vertical force).

For vertical forces:

$$
\tau=x F
$$

First Law for Rotation

Newton's First for Rotation - An object at rest, stays at rest. An object in uniform rotation stays in uniform rotation if the net torque acting on it is zero.

Uniform rotation \Rightarrow zero angular acceleration.

First Law for Rotation

Newton's First for Rotation - An object at rest, stays at rest. An object in uniform rotation stays in uniform rotation if the net torque acting on it is zero.

Uniform rotation \Rightarrow zero angular acceleration.

Example: A $30-\mathrm{kg}$ child sits on the end of a $3-\mathrm{m}$ long see-saw. Where must an $80-\mathrm{kg}$ adult sit in order to keep the see-saw balanced at 30° ?

