April 11, Week 12

Today: Chapter 9, Rotational Energy
Homework \#9 - Due April 16 at 11:59pm Mastering Physics: 7 questions from chapter 9.
Written Question: 10.80
Test Scores:

C	Clicker Score	Since last Friday with 5 lowest scores dropped.
HW	Homework Average	Mastering Physics and written problems.
CA	Current Average	\approx Your score going into the final if you don't take test \#5.

Exam corrections due by start of class on Friday.

Review

The kinetic energy of a spinning object is given by:

$$
K=\frac{1}{2} I \omega^{2}
$$

Review

The kinetic energy of a spinning object is given by:

$$
K=\frac{1}{2} I \omega^{2}
$$

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

Review

The kinetic energy of a spinning object is given by:

$$
K=\frac{1}{2} I \omega^{2}
$$

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Shape

For a fixed mass and radius, round objects naturally rotate easier, so they have a smaller moment of inertia.

In our calculations for I, where the mass is located determines how we split it into pieces.

Axis of Rotation

A single object has many different moments of inertia.

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

Axis of Rotation

A single object has many different moments of inertia.

Rotation about the Center:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Axis of Rotation

A single object has many different moments of inertia.
Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Axis of Rotation

A single object has many different moments of inertia.

Rotation about One End:

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going through the center of an object, the moments of inertia are simply related.

Parralel-Axis Theorem:

$$
I_{A}=I_{C}+M d^{2}
$$

Standard Shapes

For standard shapes and axes, equations for moments of inertia have already been calculated.

Standard Shapes

For standard shapes and axes, equations for moments of inertia have already been calculated.

Table 9.2 Moments of Inertia of Various Bodies
(e) Hollow cylinder
$I=\frac{1}{2} M\left(R_{1}{ }^{2}+R_{2}{ }^{2}\right)$

(f) Solid cylinder
$I=\frac{1}{2} M R^{2}$
(g) Thin-walled hollow cylinder
$I=M R^{2}$

(h) Solid sphere
(i) Thin-walled hollow
(I) Thin-wa
sphere

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we use the center of mass.

Center of Mass: Point on an object where the entirety of the mass appears to be located.

Rolling

When an object rolls, it rotates and its center moves.

Rolling

When an object rolls, it rotates and its center moves.

Rolling

When an object rolls, it rotates and its center moves.

Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$

Rolling

When an object rolls, it rotates and its center moves.

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$

Rolling

When an object rolls, it rotates and its center moves.

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$
Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$
Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$
Total: $K=K_{t}+K_{r}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I \omega^{2}$

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$
Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$
Total: $K=K_{t}+K_{r}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I \omega^{2}$

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$
Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$
Total: $K=K_{t}+K_{r}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I \omega^{2}$
Rolling without slipping: $v_{c m}=\omega R$

Rolling

When an object rolls, it rotates and its center moves.

Translational: $K_{t}=\frac{1}{2} M v_{c m}^{2}$
Rotational: $K_{r}=\frac{1}{2} I \omega^{2}$
Total: $K=K_{t}+K_{r}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I \omega^{2}$
Rolling without slipping: $v_{c m}=\omega R$

$$
K=\frac{1}{2} M v_{c m}^{2}\left(1+\frac{I}{M R^{2}}\right)
$$

Example

$$
K=\frac{1}{2} M v_{c m}^{2}\left(1+\frac{I}{M R^{2}}\right)
$$

Example: Two cylinders are started from rest on an almost frictionless incline with their center of masses 1 m above their ground height. The two cylinders have the same mass and radius, but one is hollow while the other is solid. Assuming there is just enough friction to cause the cylinders to roll without slipping, how fast is each going at the bottom of the incline?

