
April 11, Week 12

Today: Chapter 9, Rotational Energy

Homework #9 - Due April 16 at 11:59pm
Mastering Physics: 7 questions from chapter 9.
Written Question: 10.80

Test Scores:
C Clicker Score Since last Friday with

5 lowest scores dropped.
HW Homework Average Mastering Physics and

written problems.
CA Current Average ≈ Your score going into

the final if you don’t take test #5.

Exam corrections due by start of class on Friday.
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Review

The kinetic energy of a spinning object is given by:

K =
1

2
Iω2
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Review

The kinetic energy of a spinning object is given by:

K =
1

2
Iω2

The moment of inertia, I, is the rotational counterpart to
mass, i.e., it plays the same role in rotation as mass does in
linear motion.

The moment of inertia tells us how “hard" it is to make an
object rotate.
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Shape

For a fixed mass and radius, round objects naturally rotate
easier, so they have a smaller moment of inertia.
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Axis of Rotation

A single object has many different moments of inertia.
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Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going
through the center of an object, the moments of inertia are
simply related.
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Parallel-Axis Theorem

For rotation about an axis that is parallel to the axis going
through the center of an object, the moments of inertia are
simply related.

CA
d

Parralel-Axis Theorem:

IA = IC +Md2
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Standard Shapes

For standard shapes and axes, equations for moments of
inertia have already been calculated.
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Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we
use the center of mass.
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Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we
use the center of mass.

Center of Mass: Point on an object where the entirety of the
mass appears to be located.

99K
M
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Gravitational Potential Energy

To find the gravitational potential energy of a rigid body, we
use the center of mass.

Center of Mass: Point on an object where the entirety of the
mass appears to be located.

99K
M

ycm
xcm

Ug = Mgycm
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Rolling

When an object rolls, it rotates and its center moves.
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Rolling

When an object rolls, it rotates and its center moves.

ω
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Translational: Kt =
1
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Rolling

When an object rolls, it rotates and its center moves.

ω

−→
vcm

R

Translational: Kt =
1

2
Mv2cm

Rotational: Kr =
1

2
Iω2

Total: K = Kt +Kr =
1

2
Mv2cm +

1

2
Iω2

Rolling without slipping: vcm = ωR

K =
1

2
Mv2cm

(

1 +
I

MR2

)
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Example

K =
1

2
Mv2cm

(

1 +
I

MR2

)

Example: Two cylinders are started from rest on an almost
frictionless incline with their center of masses 1m above
their ground height. The two cylinders have the same mass
and radius, but one is hollow while the other is solid.
Assuming there is just enough friction to cause the
cylinders to roll without slipping, how fast is each going at
the bottom of the incline?
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