April 9, Week 12

Today: Chapter 9, Rotational Energy

Homework \#9 - Due April 16 at 11:59pm Mastering Physics: 7 questions from chapter 9 . Written Question: 10.80

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\overrightarrow{\boldsymbol{\alpha}}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\vec{\alpha}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.
$\vec{v}=\vec{\omega} \times \overrightarrow{\mathbf{r}}$

Review

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$, and angular acceleration $\overrightarrow{\boldsymbol{\alpha}}$.

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}
$$

RHR I - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

Take the fingers of the right hand and "sweep" $\overrightarrow{\mathrm{A}}$ into $\overrightarrow{\mathrm{B}}$, extended thumb points in direction of cross product

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Linear Accelerations

Every point on a rotating object has two acceleration components.

Linear Accelerations

Every point on a rotating object has two acceleration components.

Linear Accelerations

Every point on a rotating object has two acceleration components.

Linear Accelerations

Every point on a rotating object has two acceleration components.

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction

$$
a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction

$$
a_{\text {rad }}=\frac{v^{2}}{r}=\omega^{2} r \quad \overrightarrow{\mathbf{a}}_{\text {rad }}=-\omega^{2} \overrightarrow{\mathbf{r}}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
a_{\text {rad }}=\frac{v^{2}}{r}=\omega^{2} r
$$

$$
\overrightarrow{\mathbf{a}}_{\text {rad }}=-\omega^{2} \overrightarrow{\mathbf{r}}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r
$$

$$
\overrightarrow{\mathbf{a}}_{\text {rad }}=-\omega^{2} \overrightarrow{\mathbf{r}}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
\begin{aligned}
& a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r \quad \overrightarrow{\mathbf{a}}_{r a d}=-\omega^{2} \overrightarrow{\mathbf{r}} \\
& a_{t a n}=\alpha r
\end{aligned}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
\begin{aligned}
& a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r \\
& a_{t a n}=\alpha r
\end{aligned}
$$

$$
\overrightarrow{\mathbf{a}}_{r a d}=-\omega^{2} \overrightarrow{\mathbf{r}}
$$

$$
\vec{a}_{\tan }=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
\begin{array}{cc}
a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r & \mid \overrightarrow{\mathbf{a}}_{r a d}=-\omega^{2} \overrightarrow{\mathbf{r}} \\
a_{t a n}=\alpha r & \overrightarrow{\overrightarrow{\mathbf{a}}_{\text {tan }}=\overrightarrow{\boldsymbol{\alpha}} \times \overrightarrow{\mathbf{r}}} \\
\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}_{r a d}+\overrightarrow{\mathbf{a}}_{\text {tan }}
\end{array}
$$

Linear Accelerations

Every point on a rotating object has two acceleration components.

$\overrightarrow{\mathrm{a}}_{\text {rad }}$ - changes in direction
$\overrightarrow{\mathrm{a}}_{\text {tan }}$ - changes in speed

$$
\begin{array}{cc}
a_{r a d}=\frac{v^{2}}{r}=\omega^{2} r & \overrightarrow{\mathbf{a}}_{\text {rad }}=-\omega^{2} \overrightarrow{\mathbf{r}} \\
a_{t a n}=\alpha r & \overrightarrow{\mathbf{a}}_{\text {tan }}=\overrightarrow{\mathbf{\alpha}} \times \overrightarrow{\mathbf{r}} \\
& \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}_{\text {rad }}+\overrightarrow{\mathbf{a}}_{\text {tan }} \\
& a=\sqrt{a_{r a d}^{2}+a_{t a n}^{2}}
\end{array}
$$

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to use all of the equations for circular objects.

$r=$ distance from axis of rotation

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?
(a) $d \omega$

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?
(a) $d \omega$
(b) $\frac{d}{2} \omega$

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?
(a) $d \omega$
(b) $\frac{d}{2} \omega$
(c) $\frac{3 d}{2} \omega$

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?
(a) $d \omega$
(b) $\frac{d}{2} \omega$
(c) $\frac{3 d}{2} \omega$
(d) $2 d \omega$

Clicker Quiz

The following object is rotated about one end as shown. What is the linear speed of the point A ?
(a) $d \omega$
(b) $\frac{d}{2} \omega$
(c) $\frac{3 d}{2} \omega$
(d) $2 d \omega$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$

$$
v_{i}=r_{i} \omega
$$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$
$v_{i}=r_{i} \omega \quad$ All pieces have same ω

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$
$v_{i}=r_{i} \omega \quad$ All pieces have same ω
$K_{i}=\frac{1}{2} M_{i}\left(r_{i} \omega\right)^{2}=\frac{1}{2} M_{i} r_{i}^{2} \omega^{2}$

Rotational Kinetic Energy

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

Look at the i-th piece
It has kinetic energy, $K_{i}=\frac{1}{2} M_{i} v_{i}^{2}$
$v_{i}=r_{i} \omega \quad$ All pieces have same ω
$K_{i}=\frac{1}{2} M_{i}\left(r_{i} \omega\right)^{2}=\frac{1}{2} M_{i} r_{i}^{2} \omega^{2}$
$K \approx \sum_{i} K_{i}=\sum_{i} \frac{1}{2} M_{i} r_{i}^{2} \omega^{2}$

Rotational Kinetic Energy II

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

$$
K \approx \frac{1}{2}\left(\sum_{i} M_{i} r_{i}^{2}\right) \omega^{2}
$$

Rotational Kinetic Energy II

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

$$
K \approx \frac{1}{2}\left(\sum_{i} M_{i} r_{i}^{2}\right) \omega^{2}
$$

This expression becomes exact in the limit as the number of pieces approaches infinity (and so the size of each piece approaches zero)

Rotational Kinetic Energy II

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

$$
K \approx \frac{1}{2}\left(\sum_{i} M_{i} r_{i}^{2}\right) \omega^{2}
$$

This expression becomes exact in the limit as the number of pieces approaches infinity (and so the size of each piece approaches zero)

Rotational Kinetic Energy II

Any rotating object has a kinetic energy due to its motion.
We have to imagine splitting the rotating object up into many small pieces.

$$
K \approx \frac{1}{2}\left(\sum_{i} M_{i} r_{i}^{2}\right) \omega^{2}
$$

This expression becomes exact in the limit as the number of pieces approaches infinity (and so the size of each piece approaches zero)

Moment of Inertia

In the limit, the sum becomes the Moment of Inertia, I, for the rotating object.

Moment of Inertia

In the limit, the sum becomes the Moment of Inertia, I, for the rotating object.

$$
I \approx \sum_{i} M_{i} r_{i}^{2}
$$

Moment of Inertia

In the limit, the sum becomes the Moment of Inertia, I, for the rotating object.

$$
\begin{aligned}
& I \approx \sum_{i} M_{i} r_{i}^{2} \\
& I=\lim _{i \rightarrow \infty} \sum_{i} M_{i} r_{i}^{2}
\end{aligned}
$$

Moment of Inertia

In the limit, the sum becomes the Moment of Inertia, I, for the rotating object.

$$
\begin{aligned}
& I \approx \sum_{i} M_{i} r_{i}^{2} \\
& I=\lim _{i \rightarrow \infty} \sum_{i} M_{i} r_{i}^{2} \\
& I=\int r^{2} d M=\int r^{2} \rho d V \\
& \quad(\rho=\text { density })
\end{aligned}
$$

Moment of Inertia

In the limit, the sum becomes the Moment of Inertia, I, for the rotating object.

$$
\begin{aligned}
& I \approx \sum_{i} M_{i} r_{i}^{2} \\
& I=\lim _{i \rightarrow \infty} \sum_{i} M_{i} r_{i}^{2} \\
& I=\int r^{2} d M=\int r^{2} \rho d V \\
& \quad(\rho=\text { density }) \\
& K=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

The moment of inertia depends on:

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

The moment of inertia depends on:
(a) The object's shape.

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

The moment of inertia depends on:
(a) The object's shape.
(b) The axis of rotation.

Moment of Inertia II

The moment of inertia, I, is the rotational counterpart to mass, i.e., it plays the same role in rotation as mass does in linear motion.

The moment of inertia tells us how "hard" it is to make an object rotate.

The moment of inertia depends on:
(a) The object's shape.
(b) The axis of rotation.
(c) The total mass of the object.

