April 4, Week 11

Today: Chapter 9, Rotation

Exam \#4: Friday, April 6

Review Session: Thursday, April 5, 7:30PM in Regener 114

Practice Problems for chapters 5, 6, 7, and 8 available on Mastering Physics

Practice Exam on Website.

Review

All points rotate through the same angle We must distinguish linear motion = distance/time from angular motion = angle/time

A rotating object has infinitely many linear speeds but only one angular speed

Angular Velocity

The rate at which an objects spins is given by its angular velocity, $\vec{\omega}$.

$$
\begin{aligned}
& \omega_{a v}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t} \\
& \text { Unit: } \mathrm{rad} / \mathrm{s} \\
& \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
\end{aligned}
$$

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.
Either a change in magnitude or direction of $\vec{\omega}$ involves an $\vec{\alpha}$. This term, we'll deal only with changes in magnitude.

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.

Either a change in magnitude or direction of $\vec{\omega}$ involves an $\vec{\alpha}$. This term, we'll deal only with changes in magnitude.

$$
\alpha_{a v}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2}
$$

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.

Either a change in magnitude or direction of $\vec{\omega}$ involves an $\vec{\alpha}$. This term, we'll deal only with changes in magnitude.

$$
\begin{gathered}
\alpha_{a v}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2} \\
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
\end{gathered}
$$

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.

Either a change in magnitude or direction of $\vec{\omega}$ involves an $\vec{\alpha}$. This term, we'll deal only with changes in magnitude.

$$
\begin{gathered}
\alpha_{a v}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2} \\
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
\end{gathered}
$$

Direction: If ω increasing: $\vec{\alpha}$ in same direction as $\vec{\omega}$

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, $\vec{\alpha}$.

Either a change in magnitude or direction of $\vec{\omega}$ involves an $\vec{\alpha}$. This term, we'll deal only with changes in magnitude.

$$
\begin{gathered}
\alpha_{a v}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2} \\
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
\end{gathered}
$$

Direction: If ω increasing: $\vec{\alpha}$ in same direction as $\vec{\omega}$ If ω decreasing: $\vec{\alpha}$ in opposite direction to $\vec{\omega}$

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow
(c) \odot

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow
(c) \odot
(d) \otimes

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow
(c) \odot
(d) \otimes

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow
(c) \odot
ω decreasing $\Rightarrow \vec{\alpha}$ opposite $\vec{\omega}$
(d) \otimes

Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing angular speed. What direction is its angular acceleration vector, $\vec{\alpha}$?

(a) \uparrow
(b) \downarrow
(c) \odot
ω decreasing $\Rightarrow \vec{\alpha}$ opposite $\vec{\omega}$
(d) \otimes

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\alpha=\frac{d \omega}{d t}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{aligned}
& \alpha=\frac{d \omega}{d t} \\
& \omega=\frac{d \theta}{d t}
\end{aligned}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} &
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{aligned}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
& \downarrow \\
& v=v_{o}+a t
\end{aligned}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
& \downarrow \\
& v=v_{o}+a t \\
x & =x_{o}+v_{o} t+\frac{1}{2} a t^{2}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
& \\
& v=v_{o}+a t \\
x & =x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
& \\
& \downarrow=v_{o}+a t \\
& x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
\downarrow=\omega_{o}+\alpha t & \\
& v=v_{o}+a t \\
& x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
\downarrow & \\
\omega=\omega_{o}+\alpha t & v=v_{o}+a t \\
\theta=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} & x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{d \omega}{d t} & a=\frac{d v}{d t} \\
\omega=\frac{d \theta}{d t} & v=\frac{d x}{d t} \\
\downarrow & \\
\omega=\omega_{o}+\alpha t & v=v_{o}+a t \\
\theta=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} & x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
\omega^{2}=\omega_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right) & v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{array}
$$

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t}
$$

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t} \quad \omega=\frac{d \theta}{d t}
$$

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t} \quad \omega=\frac{d \theta}{d t}
$$

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t} \quad \omega=\frac{d \theta}{d t}
$$

$\frac{d}{d t}(s=r \theta) \Rightarrow \frac{d s}{d t}=\frac{d}{d t}(r \theta)=r \frac{d \theta}{d t}$

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t} \quad \omega=\frac{d \theta}{d t}
$$

$$
\frac{d}{d t}(s=r \theta) \Rightarrow \frac{d s}{d t}=\frac{d}{d t}(r \theta)=r \frac{d \theta}{d t}
$$

is constant

Relating Linear and Angular Velocity

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength
s is the linear distance traveled

$$
v=\frac{d s}{d t} \quad \omega=\frac{d \theta}{d t}
$$

$$
\frac{d}{d t}(s=r \theta) \Rightarrow \frac{d s}{d t}=\frac{d}{d t}(r \theta)=r \frac{d \theta}{d t} \Rightarrow v=r \omega
$$

is constant

Relating Linear and Angular Velocity II

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity II

Use the relationship $s=r \theta$ to relate linear and angular speeds.

Relating Linear and Angular Velocity II

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength

$$
v=r \omega
$$

Units: $\frac{m \cdot r a d}{s}=\frac{m \cdot r \text { rad } d}{s}$

Relating Linear and Angular Velocity II

Use the relationship $s=r \theta$ to relate linear and angular speeds.

$s=$ arclength

Units: $\frac{m \cdot \text { rad }}{s}=\frac{m \cdot r_{\text {q }} d}{s}=\mathrm{m} / \mathrm{s}$

The Cross Product

To get the correct direction, we use the cross product.

The Cross Product

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

The Cross Product

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

The Cross Product

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.
$\overrightarrow{\mathbf{B}}$

The Cross Product

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.
$\overrightarrow{\mathbf{B}} \quad \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \mid=A B \sin \phi$

The Cross Product II

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

Another Right-Hand-Rule (RHR) gives direction:
$\overrightarrow{\mathbf{B}}$

The Cross Product II

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

Another Right-Hand-Rule (RHR) gives direction:
Take the fingers of the right hand
$\stackrel{\overrightarrow{\mathrm{B}}}{\overrightarrow{\mathrm{A}},}$ and "sweep" $\overrightarrow{\mathrm{A}}$ into $\overrightarrow{\mathrm{B}}$, i.e, curl fingers from \vec{A} toward \vec{B} (using smaller angle). Extended thumb points in direction of cross product

The Cross Product II

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

Another Right-Hand-Rule (RHR) gives direction:
Take the fingers of the right hand
$\stackrel{\overrightarrow{\mathrm{B}}}{\rightarrow}$ and "sweep" $\overrightarrow{\mathrm{A}}$ into $\overrightarrow{\mathrm{B}}$, i.e, curl fingers from $\overrightarrow{\mathrm{A}}$ toward $\overrightarrow{\mathrm{B}}$ (using smaller angle). Extended thumb points in direction of cross product

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\odot
$$

The Cross Product II

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

Another Right-Hand-Rule (RHR) gives direction:
$\overrightarrow{\mathrm{B}}$
Take the fingers of the right hand and "sweep" $\overrightarrow{\mathrm{A}}$ into $\overrightarrow{\mathrm{B}}$, i.e, curl fingers from \vec{A} toward \vec{B} (using smaller angle). Extended thumb points in direction of cross product
$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\bigodot \quad \overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}=\otimes$

The Cross Product II

To get the correct direction, we use the cross product.
Cross Product or vector Product - A way to multiply two vectors. The result of which is a new vector.

Another Right-Hand-Rule (RHR) gives direction:

Linear and Angular Velocities

Linear and Angular Velocities

Linear and Angular Velocities

Linear and Angular Velocities

Linear and Angular Velocities

Linear and Angular Velocities

Linear and Angular Velocities

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

Connected Rotating Objects

