
April 4, Week 11

Today: Chapter 9, Rotation

Exam #4: Friday, April 6

Review Session: Thursday, April 5, 7:30PM in Regener 114

Practice Problems for chapters 5, 6, 7, and 8 available on
Mastering Physics

Practice Exam on Website.
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Review

Ab

B b

∆θ

Cb

All points rotate through the same angle

∆θ

∆θ

We must distinguish
linear motion = distance/time
from angular motion = angle/time

A rotating object has infinitely many linear
speeds but only one angular speed
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Angular Velocity

The rate at which an objects spins is given by its angular
velocity, −→ω .

θ1

b

θ2 ωav = θ2−θ1
t2−t1

= ∆θ

∆t

Unit: rad/s

ω = lim
∆t→0

∆θ

∆t
= dθ

dt
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The Right-Hand-Rule

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.
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The Right-Hand-Rule

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.

RHR - Curl the fingers of your right
hand in the “sense" of the rotation.
Your extended thumb, points in direction
of −→ω .
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The Right-Hand-Rule

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.

RHR - Curl the fingers of your right
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Your extended thumb, points in direction
of −→ω .
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−→
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The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.

RHR - Curl the fingers of your right
hand in the “sense" of the rotation.
Your extended thumb, points in direction
of −→ω .

Sense = clockwise or counterclockwise
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The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.
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Your extended thumb, points in direction
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The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We
use a right-hand-rule (RHR) to quickly determine which
direction.

RHR - Curl the fingers of your right
hand in the “sense" of the rotation.
Your extended thumb, points in direction
of −→ω .

Sense = clockwise or counterclockwise

−→
ω is into the page =

⊗

−→
ω

⊗
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Angular Acceleration

Any change in angular velocity must come from an angular
acceleration, −→α .
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Angular Acceleration

Any change in angular velocity must come from an angular
acceleration, −→α .

Either a change in magnitude or direction of −→ω involves an
−→
α . This term, we’ll deal only with changes in magnitude.
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Angular Acceleration

Any change in angular velocity must come from an angular
acceleration, −→α .

Either a change in magnitude or direction of −→ω involves an
−→
α . This term, we’ll deal only with changes in magnitude.

αav =
ω2 − ω1

t2 − t1
=

∆ω

∆t
Unit: rad/s2
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Angular Acceleration

Any change in angular velocity must come from an angular
acceleration, −→α .

Either a change in magnitude or direction of −→ω involves an
−→
α . This term, we’ll deal only with changes in magnitude.

αav =
ω2 − ω1

t2 − t1
=

∆ω

∆t
Unit: rad/s2

α = lim
∆t→0

∆ω

∆t
=

dω

dt

Direction: If ω increasing: −→α in same direction as −→
ω
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Angular Acceleration

Any change in angular velocity must come from an angular
acceleration, −→α .

Either a change in magnitude or direction of −→ω involves an
−→
α . This term, we’ll deal only with changes in magnitude.

αav =
ω2 − ω1

t2 − t1
=

∆ω

∆t
Unit: rad/s2

α = lim
∆t→0

∆ω

∆t
=

dω

dt

Direction: If ω increasing: −→α in same direction as −→
ω

If ω decreasing: −→α in opposite direction to −→
ω
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Clicker Quiz

A wheel, rotating counter-clockwise, has a decreasing
angular speed. What direction is its angular acceleration
vector, −→α?
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Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

a = dv

dt

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

a = dv

dt

v = dx

dt

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

a = dv

dt

v = dx

dt

Rotation – p. 8/14



Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω
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ω = dθ
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a = dv
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v = dx

dt

v = vo + at
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Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

ω = ωo + αt

a = dv
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Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

ω = ωo + αt

θ = θo + ωot+
1
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a = dv
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Angular Kinematics

For constant angular acceleration, equations of motion can
be derived using what we already know.

α = dω

dt

ω = dθ

dt

ω = ωo + αt

θ = θo + ωot+
1

2
αt2

ω2 = ω2
o + 2α (θ − θo)

a = dv

dt

v = dx

dt

v = vo + at

x = xo + vot+
1

2
at2

v2 = v2o + 2a (x− xo)
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Relating Linear and Angular Velocity

Use the relationship s = rθ to relate linear and angular
speeds.

b
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s = arclength

s is the linear distance traveled

v = ds

dt
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dt
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Relating Linear and Angular Velocity

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

s is the linear distance traveled

v = ds

dt
ω = dθ

dt

d

dt
(s = rθ)

b
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Relating Linear and Angular Velocity

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

s is the linear distance traveled

v = ds

dt
ω = dθ

dt

d

dt
(s = rθ) ⇒ ds

dt
= d

dt
(rθ)

b
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s is the linear distance traveled
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Use the relationship s = rθ to relate linear and angular
speeds.
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Relating Linear and Angular Velocity

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

s is the linear distance traveled

v = ds

dt
ω = dθ

dt

d

dt
(s = rθ) ⇒ ds

dt
= d

dt
(rθ) = r dθ

dt
⇒ v = rω

r is constant
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Relating Linear and Angular Velocity II

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

v = rω

Units:

b
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Relating Linear and Angular Velocity II

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

v = rω

Units: m·rad
s

b
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Relating Linear and Angular Velocity II

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

v = rω

Units: m·rad
s

=
m·rad\
s

b
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Relating Linear and Angular Velocity II

Use the relationship s = rθ to relate linear and angular
speeds.

r

b

θ

s = arclength

v = rω

Units: m·rad
s

=
m·rad\
s

= m/s
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The Cross Product

To get the correct direction, we use the cross product.
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The Cross Product

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
B

φ

∣

∣

∣

−→
A ×

−→
B

∣

∣

∣

= AB sinφ
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The Cross Product

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
B

φ

∣

∣

∣

−→
A ×

−→
B

∣

∣

∣

= AB sinφ

−→
A ×

−→
B is perpendicular to both

−→
A and

−→
B
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The Cross Product II

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
B

φ

Another Right-Hand-Rule (RHR) gives direction:

Rotation – p. 12/14



The Cross Product II

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
B

φ

Another Right-Hand-Rule (RHR) gives direction:

Take the fingers of the right hand
and “sweep"

−→
A into

−→
B , i.e, curl

fingers from
−→
A toward

−→
B (using

smaller angle). Extended thumb
points in direction of cross product

Rotation – p. 12/14



The Cross Product II

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
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φ

Another Right-Hand-Rule (RHR) gives direction:

Take the fingers of the right hand
and “sweep"

−→
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−→
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−→
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−→
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⊙
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The Cross Product II

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.
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B

φ

Another Right-Hand-Rule (RHR) gives direction:
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The Cross Product II

To get the correct direction, we use the cross product.

Cross Product or vector Product - A way to multiply two
vectors. The result of which is a new vector.

−→
A

−→
B

φ

Another Right-Hand-Rule (RHR) gives direction:

Take the fingers of the right hand
and “sweep"

−→
A into

−→
B , i.e, curl

fingers from
−→
A toward

−→
B (using

smaller angle). Extended thumb
points in direction of cross product

−→
A ×

−→
B =

⊙ −→
B ×

−→
A =

⊗ −→
A ×

−→
B = −

−→
B ×

−→
A
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Linear and Angular Velocities

b
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Linear and Angular Velocities

−→ω
⊙

b
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Linear and Angular Velocities
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Linear and Angular Velocities
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Linear and Angular Velocities

−→ω
⊙

b
−→
r

b
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Linear and Angular Velocities

−→ω
⊙

b
−→
r

−→
v

b
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Linear and Angular Velocities

−→ω
⊙

b
−→
r

−→
v

−→
v = −→ω ×

−→
r
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Connected Rotating Objects

r1

r2
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Connected Rotating Objects

r1

r2

−→
v

−→
v

When connected by a non-slipping
chain or belt, the two rotating objects
must have the same linear velocity
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Connected Rotating Objects

r1

r2

−→
v

−→
v

When connected by a non-slipping
chain or belt, the two rotating objects
must have the same linear velocity

v1 = v2

ω1r1 = ω2r2
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Connected Rotating Objects

r1

r2

−→
v

−→
v

When connected by a non-slipping
chain or belt, the two rotating objects
must have the same linear velocity

v1 = v2

ω1r1 = ω2r2

Different Angular Velocities
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