April 2, Week 11

Today: Chapter 9, Rotation

Homework \#8:
Mastering Physics: 8 problems from chapter 8
Written Question: 8.101
Due today at $11: 59 \mathrm{pm}$

Exam \#4: Friday, April 6
Review Session: Thursday, April 5, 7:30PM in Regener 114
Practice Problems for chapters 5, 6, 7, and 8 available on Mastering Physics
Practice Exam on Website.

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:
Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:

$$
A: 2 \pi r_{A}
$$

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:

$$
A: 2 \pi r_{A}
$$

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:

$$
\begin{aligned}
& A: 2 \pi r_{A} \\
& B: 2 \pi r_{B}
\end{aligned}
$$

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:

$$
\begin{aligned}
& A: 2 \pi r_{A} \\
& B: 2 \pi r_{B}
\end{aligned}
$$

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A
Take the same amount of time

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:

Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A
Take the same amount of time
B going faster than A !

Rotation

Rotational Motion - Spinning or rolling of rigid bodies.
Circular Objects:
Follow two points, A and B
Distance traveled during one revolution:
$A: 2 \pi r_{A}$
$B: 2 \pi r_{B}$
B travels farther than A
Take the same amount of time
B going faster than A !
A spinning object has infinitely many speeds

Angular Motion

While A and B travel different distances, they are always at the same angle.

Angular Motion

While A and B travel different distances, they are always at the same angle.

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

We must distinguish

linear motion $=$ distance/time from angular motion = angle/time

Angular Motion

While A and B travel different distances, they are always at the same angle.

All points rotate through the same angle

We must distinguish

linear motion = distance/time from angular motion $=$ angle/time

A rotating object has infinitely many linear speeds but only one angular speed

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Units: $\theta=\frac{s}{r} \Rightarrow \frac{m}{m}=1 \leftarrow$ No Unit!

Angle

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Units: $\theta=\frac{s}{r} \Rightarrow \frac{m}{m}=1 \leftarrow$ No Unit!
" $r a d$ " is a way specify an angular quantity

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

$$
\omega_{a v}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

$$
\omega_{a v}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s

Angular Velocity

The rate at which an objects spins is given by its angular speed, ω.

$$
\begin{aligned}
& \omega_{a v}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t} \\
& \text { Unit: } \mathrm{rad} / \mathrm{s} \\
& \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
\end{aligned}
$$

Rotational Axis

The direction of $\vec{\omega}$ is along the axis of rotation.

Rotational Axis

The direction of $\vec{\omega}$ is along the axis of rotation.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Rotational Axis

The direction of $\vec{\omega}$ is along the axis of rotation.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion
$\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathrm{v}}$

Rotational Axis

The direction of $\vec{\omega}$ is along the axis of rotation.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion
$\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathrm{v}}$

Rotational Axis

The direction of $\vec{\omega}$ is along the axis of rotation.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion

$$
\Rightarrow 90^{\circ} \text { to all } \overrightarrow{\mathrm{v}}
$$

The rotational axis is along the z-axis, i.e., into and out of the page

Rotational Axis II

Any rotation has an axis.

Rotational Axis II

Any rotation has an axis.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The Right-Hand-Rule II

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?
(a) Up

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?
(a) Up
(b) Down

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?
(a) Up
(b) Down
(c) Towards the board

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?
(a) Up
(b) Down
(c) Towards the board
(d) Towards the back of the room

Clicker Quiz

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?
(a) Up
(b) Down
(c) Towards the board
(d) Towards the back of the room

