April 2, Week 11

Today: Chapter 9, Rotation

Homework #8: Mastering Physics: 8 problems from chapter 8 Written Question: 8.101 Due today at 11:59pm

Exam #4: Friday, April 6

Review Session: Thursday, April 5, 7:30PM in Regener 114

Practice Problems for chapters 5, 6, 7, and 8 available on Mastering Physics Practice Exam on Website.

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution: 3

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution: $A: 2\pi r_A$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution: $A: 2\pi r_A$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, A and B Distance traveled during one revolution: $A: 2\pi r_A$ $B: 2\pi r_B$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, A and B Distance traveled during one revolution: $A: 2\pi r_A$ $B: 2\pi r_B$

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution: $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

<u>Rotational Motion</u> - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution: $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, A and B Distance traveled during one revolution: $A: 2\pi r_A$

 $B:2\pi r_B$

B travels farther than A

Take the same amount of time

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, *A* and *B* Distance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

Take the same amount of time

B going faster than *A*!

Rotational Motion - Spinning or rolling of rigid bodies.

Circular Objects:

Follow two points, A and BDistance traveled during one revolution:

 $A: 2\pi r_A$ $B: 2\pi r_B$

B travels farther than A

Take the same amount of time

B going faster than *A*!

A spinning object has infinitely many speeds

While *A* and *B* travel different distances, they are always at the same angle.

While *A* and *B* travel different distances, they are always at the same angle.

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle We must distinguish linear motion = distance/time from angular motion = angle/time

While *A* and *B* travel different distances, they are always at the same angle.

All points rotate through the same angle We must distinguish linear motion = distance/time from angular motion = angle/time

A rotating object has infinitely many linear speeds but only one angular speed

Units:
$$\theta = \frac{s}{r} \Rightarrow \frac{m}{m} = 1 \leftarrow \text{No Unit!}$$

In this chapter, we'll find it necessary to use radians instead of degrees to measure angles.

Units: $\theta = \frac{s}{r} \Rightarrow \frac{m}{m} = 1 \leftarrow \text{No Unit!}$

"rad" is a way specify an angular quantity

$$\omega_{av} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

The rate at which an objects spins is given by its angular speed, ω .

$$\omega_{av} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: *rad/s*

The rate at which an objects spins is given by its angular speed, ω .

$$\omega_{av} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: *rad/s*

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

The direction of $\vec{\omega}$ is along the axis of rotation.

The direction of $\vec{\omega}$ is along the axis of rotation.

<u>Axis of Rotation</u> - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

The direction of $\vec{\omega}$ is along the axis of rotation.

<u>Axis of Rotation</u> - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion $\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathbf{v}}$

The direction of $\vec{\omega}$ is along the axis of rotation.

<u>Axis of Rotation</u> - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion $\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathbf{v}}$

The direction of $\vec{\omega}$ is along the axis of rotation.

<u>Axis of Rotation</u> - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion $\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathbf{v}}$

The rotational axis is along the *z*-axis, *i.e.*, into and out of the page

Any rotation has an axis.

Any rotation has an axis.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\overrightarrow{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is out of page

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is out of page = \bigcirc

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is out of page = \bigcirc

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

F F N C S

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is into the page

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is into the page = \bigotimes

The angular velocity points along the axis of rotation. We use a right-hand-rule (RHR) to quickly determine which direction.

RHR - Curl the fingers of your right hand in the "sense" of the rotation. Your extended thumb, points in direction of $\vec{\omega}$.

Sense = clockwise or counterclockwise

 $\overrightarrow{\omega}$ is into the page = \bigotimes

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

(a) Up

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

(a) Up

(b) Down

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

(a) Up

(b) Down

(c) Towards the board

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

(a) Up

(b) Down

(c) Towards the board

(d) Towards the back of the room

For a spinning wheel held horizontal, spinning counter-clockwise when looked at from above, what direction is the angular velocity?

(b) Down

(c) Towards the board

(d) Towards the back of the room