## March 30, Week 10

Today: Chapter 8, Collisions
Homework \#8:
Mastering Physics: 8 problems from chapter 8
Written Question: 8.101
Due April 2 at 11:59pm

Exam \#4: Friday, April 6
Review Session: Thursday, April 5, 7:30PM
Practice Problems for chapters 5, 6, and 7 available on Mastering Physics

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


## A

Before

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before
After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1} \quad M_{A} \overrightarrow{\mathbf{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2}
$$

## Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.


Before


After

$$
M_{A} \overrightarrow{\mathrm{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}=M_{A} \overrightarrow{\mathrm{v}}_{A 2}+M_{B} \overrightarrow{\mathrm{v}}_{B 2}
$$

## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


Internal Forces - Forces
inside the system.
Always come in
action/reaction pairs

## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


Internal Forces - Forces
inside the system.
Always come in action/reaction pairs

## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


Internal Forces - Forces
inside the system.
Always come in action/reaction pairs

## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


Internal Forces - Forces
inside the system.
Always come in action/reaction pairs

## Non-Conservation of Momentum

If there are external force acting on a system then momentum will not be conserved.


Internal Forces - Forces
inside the system.
Always come in action/reaction pairs

## External Forces - Forces

from outside the system

## Collisions

Collision - Any strong interaction that lasts a short period of time.

## Collisions

Collision - Any strong interaction that lasts a short period of time.

Collisions are always assumed to conserve momentum since even if there are external forces, the collision's short duration makes their effect on the motion negligible.

## Collisions

Collision - Any strong interaction that lasts a short period of time.

Collisions are always assumed to conserve momentum since even if there are external forces, the collision's short duration makes their effect on the motion negligible.

Collisions are classified as to whether they also conserve kinetic energy.

## Collisions

Collision - Any strong interaction that lasts a short period of time.

Collisions are always assumed to conserve momentum since even if there are external forces, the collision's short duration makes their effect on the motion negligible.

Collisions are classified as to whether they also conserve kinetic energy.
Elastic Collision - Conserves Momentum and Kinetic Energy.

## Collisions

Collision - Any strong interaction that lasts a short period of time.

Collisions are always assumed to conserve momentum since even if there are external forces, the collision's short duration makes their effect on the motion negligible.

Collisions are classified as to whether they also conserve kinetic energy.
Elastic Collision - Conserves Momentum and Kinetic Energy.
Inelastic Collision - Conserves Momentum only.

## Collisions

Collision - Any strong interaction that lasts a short period of time.

Collisions are always assumed to conserve momentum since even if there are external forces, the collision's short duration makes their effect on the motion negligible.

Collisions are classified as to whether they also conserve kinetic energy.
Elastic Collision - Conserves Momentum and Kinetic Energy.
Inelastic Collision - Conserves Momentum only.

Example: Are the collisions from the previous lecture elastic?

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before
After
$M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}$

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}
$$

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}
$$

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1} \quad\left(M_{A}+M_{B}\right) \overrightarrow{\mathbf{v}}_{2}
$$

## Completely Inelastic Collisions

When the colliding objects stick together, the collision can never be elastic. This collision is called completely inelastic or a plastic collision.


Before


After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=\left(M_{A}+M_{B}\right) \overrightarrow{\mathrm{v}}_{2}
$$

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \overrightarrow{\mathrm{v}}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \overrightarrow{\mathrm{v}}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?


Before

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?


## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?

(a) $3 v$

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?

$\begin{array}{ll}\text { (a) } 3 v & \text { (b) } 2 v\end{array}$

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?

(a) $3 v$
(b) $2 v$
(c) $v$

## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?


## Clicker Quiz

A block with $M_{A}=m$ and velocity $3 \vec{v}$ to the right has a completely inelastic collision with $M_{B}=2 m$ that is initially at rest. How fast must the masses be going the instant after their collision?


## Example

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=\left(M_{A}+M_{B}\right) \overrightarrow{\mathbf{v}}_{2}
$$

## Example

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=\left(M_{A}+M_{B}\right) \overrightarrow{\mathbf{v}}_{2}
$$

Example: A $2900-\mathrm{kg}$ Hummer $\mathrm{H}_{2}$ going East on Lomas Boulevard at $11 \mathrm{~m} / \mathrm{s}$ has a completely inelastic collision with a $730-\mathrm{kg}$ smart-car going $25^{\circ}$ East-of-North at $30 \mathrm{~m} / \mathrm{s}$ on Monte-Vista Boulevard. What is the speed and direction of the combination the instant after the collision?

## Elastic Collisions

Elastic Collisions occur when there is no friction between the colliding objects and a perfect reformation of shape of both objects.

## Elastic Collisions

Elastic Collisions occur when there is no friction between the colliding objects and a perfect reformation of shape of both objects.

Billiard Collisions are almost perfectly elastic.

## Elastic Collisions

Elastic Collisions occur when there is no friction between the colliding objects and a perfect reformation of shape of both objects.

Billiard Collisions are almost perfectly elastic.
For an elastic collision, we must have:

## Elastic Collisions

Elastic Collisions occur when there is no friction between the colliding objects and a perfect reformation of shape of both objects.

Billiard Collisions are almost perfectly elastic.
For an elastic collision, we must have:

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=M_{A} \overrightarrow{\mathrm{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2}
$$

## Elastic Collisions

Elastic Collisions occur when there is no friction between the colliding objects and a perfect reformation of shape of both objects.

Billiard Collisions are almost perfectly elastic.
For an elastic collision, we must have:

$$
\begin{aligned}
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1} & =M_{A} \overrightarrow{\mathbf{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2} \text { and } \\
\frac{1}{2} M_{A} v_{A 1}^{2}+\frac{1}{2} M_{B} v_{B 1}^{2} & =\frac{1}{2} M_{A} v_{A 2}^{2}+\frac{1}{2} M_{B} v_{B 2}^{2}
\end{aligned}
$$

## 1D Elastic Collisions

In 1D, the velocities have just one component $\Rightarrow \overrightarrow{\mathrm{v}}_{A 1}=v_{A 1}$, etc.

## 1D Elastic Collisions

In 1D, the velocities have just one component $\Rightarrow \overrightarrow{\mathrm{v}}_{A 1}=v_{A 1}$, etc.

$$
\begin{aligned}
M_{A} v_{A 1}+M_{B} v_{B 1} & =M_{A} v_{A 2}+M_{B} v_{B 2} \quad \text { and } \\
\frac{1}{2} M_{A} v_{A 1}^{2}+\frac{1}{2} M_{B} v_{B 1}^{2} & =\frac{1}{2} M_{A} v_{A 2}^{2}+\frac{1}{2} M_{B} v_{B 2}^{2}
\end{aligned}
$$

## 1D Elastic Collisions

In 1D, the velocities have just one component $\Rightarrow \overrightarrow{\mathrm{v}}_{A 1}=v_{A 1}$, etc.

$$
\begin{aligned}
M_{A} v_{A 1}+M_{B} v_{B 1} & =M_{A} v_{A 2}+M_{B} v_{B 2} \quad \text { and } \\
\frac{1}{2} M_{A} v_{A 1}^{2}+\frac{1}{2} M_{B} v_{B 1}^{2} & =\frac{1}{2} M_{A} v_{A 2}^{2}+\frac{1}{2} M_{B} v_{B 2}^{2}
\end{aligned}
$$

Given $M_{A}, M_{B}, v_{A 1}, v_{B 1} \Rightarrow$ there are two unknowns ( $v_{A 2}$ and $v_{B 2}$ ) and two equations.

## 1D Elastic Collisions

In 1D, the velocities have just one component $\Rightarrow \overrightarrow{\mathrm{v}}_{A 1}=v_{A 1}$, etc.

$$
\begin{aligned}
M_{A} v_{A 1}+M_{B} v_{B 1} & =M_{A} v_{A 2}+M_{B} v_{B 2} \quad \text { and } \\
\frac{1}{2} M_{A} v_{A 1}^{2}+\frac{1}{2} M_{B} v_{B 1}^{2} & =\frac{1}{2} M_{A} v_{A 2}^{2}+\frac{1}{2} M_{B} v_{B 2}^{2}
\end{aligned}
$$

Given $M_{A}, M_{B}, v_{A 1}, v_{B 1} \Rightarrow$ there are two unknowns ( $v_{A 2}$ and $v_{B 2}$ ) and two equations.

Only one way to have an elastic collision in 1D!

## 1D Elastic Collisions Cont.

It can be shown (see textbook or lecture notes) that if a collision is elastic, the relative velocity, $v_{A}-v_{B}$, changes sign after the collision.

## 1D Elastic Collisions Cont.

It can be shown (see textbook or lecture notes) that if a collision is elastic, the relative velocity, $v_{A}-v_{B}$, changes sign after the collision.

$$
\left(v_{A 2}-v_{B 2}\right)=-\left(v_{A 1}-v_{B 1}\right)
$$

## 1D Elastic Collisions Cont.

It can be shown (see textbook or lecture notes) that if a collision is elastic, the relative velocity, $v_{A}-v_{B}$, changes sign after the collision.

$$
\left(v_{A 2}-v_{B 2}\right)=-\left(v_{A 1}-v_{B 1}\right)
$$

Substituting into the momentum equation gives (see lecture notes):

## 1D Elastic Collisions Cont.

It can be shown (see textbook or lecture notes) that if a collision is elastic, the relative velocity, $v_{A}-v_{B}$, changes sign after the collision.

$$
\left(v_{A 2}-v_{B 2}\right)=-\left(v_{A 1}-v_{B 1}\right)
$$

Substituting into the momentum equation gives (see lecture notes):

$$
v_{A 2}=\frac{V_{A 1}\left(M_{A}-M_{B}\right)+2 M_{B} V_{B 1}}{\left(M_{A}+M_{B}\right)}
$$

## 1D Elastic Collisions Cont.

It can be shown (see textbook or lecture notes) that if a collision is elastic, the relative velocity, $v_{A}-v_{B}$, changes sign after the collision.

$$
\left(v_{A 2}-v_{B 2}\right)=-\left(v_{A 1}-v_{B 1}\right)
$$

Substituting into the momentum equation gives (see lecture notes):

$$
\begin{aligned}
& v_{A 2}=\frac{V_{A 1}\left(M_{A}-M_{B}\right)+2 M_{B} V_{B 1}}{\left(M_{A}+M_{B}\right)} \\
& v_{B 2}=\frac{-V_{B 1}\left(M_{A}-M_{B}\right)+2 M_{A} V_{A 1}}{\left(M_{A}+M_{B}\right)}
\end{aligned}
$$

## 1D Elastic Collisions Example

$$
v_{A 2}=\frac{V_{A 1}\left(M_{A}-M_{B}\right)+2 M_{B} V_{B 1}}{\left(M_{A}+M_{B}\right)}
$$

$$
v_{B 2}=\frac{-V_{B 1}\left(M_{A}-M_{B}\right)+2 M_{A} V_{A 1}}{\left(M_{A}+M_{B}\right)}
$$

## 1D Elastic Collisions Example

$$
v_{A 2}=\frac{V_{A 1}\left(M_{A}-M_{B}\right)+2 M_{B} V_{B 1}}{\left(M_{A}+M_{B}\right)}
$$

$$
v_{B 2}=\frac{-V_{B 1}\left(M_{A}-M_{B}\right)+2 M_{A} V_{A 1}}{\left(M_{A}+M_{B}\right)}
$$

Example: A $5-\mathrm{kg}$ mass going $6 \mathrm{~m} / \mathrm{s}$ to the right has a one-dimensional elastic collision with a 30 kg mass initially at rest. What are the speeds and direction of both afterwards?

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

$$
M_{A} v_{A 1, x}+M_{B} v_{B 1, x}=M_{A} v_{A 2, x}+M_{B} v_{B 2, x}
$$

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

$$
\begin{aligned}
& M_{A} v_{A 1, x}+M_{B} v_{B 1, x}=M_{A} v_{A 2, x}+M_{B} v_{B 2, x} \\
& M_{A} v_{A 1, y}+M_{B} v_{B 1, y}=M_{A} v_{A 2, y}+M_{B} v_{B 2, y}
\end{aligned}
$$

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

$$
\begin{aligned}
& M_{A} v_{A 1, x}+M_{B} v_{B 1, x}=M_{A} v_{A 2, x}+M_{B} v_{B 2, x} \\
& M_{A} v_{A 1, y}+M_{B} v_{B 1, y}=M_{A} v_{A 2, y}+M_{B} v_{B 2, y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} M_{A}\left(v_{A 1, x}^{2}+v_{A 1, y}^{2}\right)+\frac{1}{2} M_{B}\left(v_{B 1, x}^{2}+v_{B 1, y}^{2}\right)= \\
& \frac{1}{2} M_{A}\left(v_{A 2, x}^{2}+v_{A 2, y}^{2}\right)+\frac{1}{2} M_{A}\left(v_{B 2, x}^{2}+v_{B 2, y}^{2}\right)
\end{aligned}
$$

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

Given the masses and initial velocities, there are four unknowns:

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).
Given the masses and initial velocities, there are four unknowns:

$$
v_{A 2, x} \quad v_{A 2, y} \quad v_{B 2, x} \quad v_{B 2, y}
$$

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).
Given the masses and initial velocities, there are four unknowns:

$$
v_{A 2, x} \quad v_{A 2, y} \quad v_{B 2, x} \quad v_{B 2, y}
$$

But only three equations!

## 2D Elastic Collisions

In two-dimensions, there are two momentum equations (one for each component), but still only a single energy equation (energy is a scalar).

Given the masses and initial velocities, there are four unknowns:

$$
v_{A 2, x} \quad v_{A 2, y} \quad v_{B 2, x} \quad v_{B 2, y}
$$

But only three equations!

Infinitely many ways to have a 2D elastic collision

## 2D Example

We must restrict the problem in some way for there to be a single solution.

## 2D Example

We must restrict the problem in some way for there to be a single solution.

Example: A $2900-\mathrm{kg}$ Hummer $\mathrm{H}_{2}$ going East on Lomas
Boulevard at $11 \mathrm{~m} / \mathrm{s}$ has an elastic collision with a $730-\mathrm{kg}$ smart-car going $25^{\circ}$ East-of-North at $30 \mathrm{~m} / \mathrm{s}$ on Monte-Vista Boulevard. If the Hummer has a speed of $9 \mathrm{~m} / \mathrm{s}$ afterwards, what is the speed of the smart-car and direction for both, the instant after the collision?

