March 26, Week 10

Today: Chapter 8, Momentum

Homework \#8:
Mastering Physics: 8 problems from chapter 8
Written Question: 8.101
Due April 2 at 11:59pm

Exam \#4, Friday, April 6.
Practice Problems for chapters 5, 6, and 7 available on Mastering Physics

Review

Momentum: $\overrightarrow{\mathbf{p}}=M \overrightarrow{\mathbf{v}}$ Unit: $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Momentum measures how "hard" it is to change the velocity of an object.

Review

Momentum: $\overrightarrow{\mathrm{p}}=M \overrightarrow{\mathrm{v}}$ Unit: $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Momentum measures how "hard" it is to change the velocity of an object.

Newton's Second Law: $\Sigma \overrightarrow{\mathbf{F}}=\frac{d \overrightarrow{\mathrm{P}}}{d t}$

Review

Momentum: $\overrightarrow{\mathrm{p}}=M \overrightarrow{\mathrm{v}}$ Unit: $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Momentum measures how "hard" it is to change the velocity of an object.

Newton's Second Law: $\Sigma \overrightarrow{\mathbf{F}}=\frac{d \overrightarrow{\mathrm{P}}}{d t}$

Impulse-Momentum: $\overrightarrow{\mathbf{J}}=\overrightarrow{\mathrm{F}}_{a v} \Delta t \quad \Sigma \overrightarrow{\mathrm{~J}}=\Delta \overrightarrow{\mathrm{p}}$

Conservation of Momentum

Conservation of Momentum

Conservation of Momentum

$\overrightarrow{\mathbf{F}}_{B}=$ Force on B due to A

Conservation of Momentum

$\overrightarrow{\mathbf{F}}_{B}=$ Force on B due to A
$\overrightarrow{\mathbf{F}}_{A}=$ Force on A due to B

Conservation of Momentum

$\overrightarrow{\mathbf{F}}_{B}=$ Force on B due to A
$\overrightarrow{\mathbf{F}}_{A}=$ Force on A due to B
3rd Law: $\overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B}$

Conservation of Momentum

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{B}=\text { Force on } B \text { due to } A \\
& \overrightarrow{\mathbf{F}}_{A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B} \\
& \overrightarrow{\mathbf{F}}_{A}+\overrightarrow{\mathbf{F}}_{B}=0
\end{aligned}
$$

Conservation of Momentum

Conservation of Momentum

(

Conservation of Momentum

$$
\begin{aligned}
& \longrightarrow \overrightarrow{\mathbf{F}}_{B}=\frac{d \overrightarrow{\mathbf{p}}_{B}}{d t} \\
& \overrightarrow{\mathbf{F}}_{B}=\text { Force on } B \text { due to } A \\
& \overrightarrow{\mathbf{F}}_{A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B} \\
& \overrightarrow{\mid c}_{\overrightarrow{\mathbf{F}}_{A}+\overrightarrow{\mathbf{F}}_{B}=0}^{\frac{d \overrightarrow{\mathbf{p}_{A}}}{d t}+\frac{d \overrightarrow{\mathbf{p}}_{B}}{d t}=0}
\end{aligned}
$$

Conservation of Momentum

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A}=\frac{d \overrightarrow{\mathbf{p}}_{A}}{d t} \\
& \frac{d}{d t}\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \\
& \overrightarrow{\mathbf{F}}_{A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B} \\
& \overrightarrow{\mathbf{F}}_{A}+\overrightarrow{\mathbf{F}}_{B}=0 \\
& \frac{d \overrightarrow{\mathbf{p}}_{A}}{d t}+\frac{d \overrightarrow{\mathbf{p}}_{B}}{d t}=0
\end{aligned}
$$

Conservation of Momentum

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A}=\frac{d \overrightarrow{\mathbf{p}}_{A}}{d t} \\
& \overrightarrow{\mathbf{F}}_{A}=\frac{\overrightarrow{\mathbf{F}}_{B}=\frac{d \overrightarrow{\mathbf{P}}_{B}}{d t}}{\overrightarrow{\mathbf{F}}_{B}=\text { Force on } A \text { due to } B} \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B}
\end{aligned}
$$

$$
\frac{d}{d t}\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow \overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}=\mathrm{constant}
$$

Conservation of Momentum

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A}=\frac{d \overrightarrow{\mathbf{p}}_{A}}{d t} \\
& \overrightarrow{\mathbf{F}}_{A}=\frac{\overrightarrow{\mathbf{F}}_{B}=\frac{d \overrightarrow{\mathbf{P}}_{B}}{d t}}{\overrightarrow{\mathbf{F}}_{B}=\text { Force on } B \text { due to } A} \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{A}=-\overrightarrow{\mathbf{F}}_{B} \\
& \overrightarrow{\mathbf{F}}_{A}+\overrightarrow{\mathbf{F}}_{B}=0
\end{aligned}
$$

$\frac{d}{d t}\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow \overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}=$ constant

$$
\Rightarrow \Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

A

Before

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before
After

$$
M_{A} \overrightarrow{\mathrm{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1} \quad M_{A} \overrightarrow{\mathbf{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2}
$$

Conservation of Momentum II

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
M_{A} \overrightarrow{\mathrm{v}}_{A 1}+M_{B} \overrightarrow{\mathrm{v}}_{B 1}=M_{A} \overrightarrow{\mathrm{v}}_{A 2}+M_{B} \overrightarrow{\mathrm{v}}_{B 2}
$$

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

After

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

(a) $3 v$

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

$\begin{array}{ll}\text { (a) } 3 v & \text { (b) } 2 v\end{array}$

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

After
(a) $3 v$
(b) $2 v$
(c) v

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

After
(a) $3 v$
(b) $2 v$
(c) v
(d) 0

Clicker Quiz

A mass $M_{A}=m$ moving with velocity $3 \vec{v}$ to the right collides with an object $M_{B}=2 m$ that is at rest. If M_{A} bounces to the left with a speed v, how fast must M_{B} be going?

Before

After
(a) $3 v$
(b) $2 v$
(c) v
(d) 0

Examples

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=M_{A} \overrightarrow{\mathbf{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2}
$$

Examples

$$
M_{A} \overrightarrow{\mathbf{v}}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=M_{A} \overrightarrow{\mathbf{v}}_{A 2}+M_{B} \overrightarrow{\mathbf{v}}_{B 2}
$$

Example: A $M_{A}=5-\mathrm{kg}$ block with $\overrightarrow{\mathrm{v}}_{A 1}=15 \mathrm{~m} / \mathrm{s}$ to the right hits a $M_{B}=12.5-\mathrm{kg}$ block that has $\overrightarrow{\mathrm{v}}_{B 1}=6 \mathrm{~m} / \mathrm{s}$ to the left. If M_{B} bounces with a $\overrightarrow{\mathbf{v}}_{B 2}=3 \mathrm{~m} / \mathrm{s}$ to the right, what velocity must M_{A} have?

Examples

$$
M_{A} \vec{v}_{A 1}+M_{B} \overrightarrow{\mathbf{v}}_{B 1}=M_{A} \vec{v}_{A 2}+M_{B} \vec{v}_{B 2}
$$

Example: A $M_{A}=5-\mathrm{kg}$ block with $\overrightarrow{\mathrm{v}}_{A 1}=15 \mathrm{~m} / \mathrm{s}$ to the right hits a $M_{B}=12.5-\mathrm{kg}$ block that has $\overrightarrow{\mathrm{v}}_{B 1}=6 \mathrm{~m} / \mathrm{s}$ to the left. If M_{B} bounces with a $\overrightarrow{\mathbf{v}}_{B 2}=3 \mathrm{~m} / \mathrm{s}$ to the right, what velocity must M_{A} have?

Example: A $M_{A}=5-\mathrm{kg}$ block with $\overrightarrow{\mathrm{v}}_{A 1}=15 \mathrm{~m} / \mathrm{s}$ at 45° hits a $M_{B}=12.5-\mathrm{kg}$ block that has $\overrightarrow{\mathrm{v}}_{B 1}=6 \mathrm{~m} / \mathrm{s}$ to the left. If M_{B} bounces with a $\overrightarrow{\mathrm{v}}_{B 2}=3.49 \mathrm{~m} / \mathrm{s}$ to the right, what velocity must M_{A} have?

